Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fluorouracil and the isolation of mutants lacking uridine phosphorylase in Escherichia coli: Location of the gene

Summary

A selective technique is described for the isolation of mutants of Escherichia coli lacking uridine phosphorylase and the location of the gene specifying this enzyme on the bacterial chromosome is determined. Using strains with appropriate lesions it is shown that there are three routes via which 5-fluorouracil can be converted to compounds which inhibit cell growth.

This is a preview of subscription content, log in to check access.

References

  1. Ahmad, S. I., Pritchard, R. H.: A map of four genes specifying enzymes involved in catabolism of nucleosides and deoxynucleosides in Escherichia coli. Molec. Gen. Genetics 104, 351 (1969).

  2. Beacham, I. R., Barth, P. T., Pritchard, R. H.: Constitutivity of thymidine phosphorylase in deoxyriboaldolase negative strains: dependence on thymine requirement and concentration. Biochim. biophys. Acta (Amst.) 166, 589 (1968).

  3. Bolton, E. T., Reynard, A. M.: Utilisation of purine and pyrimidine compounds in nucleic acid synthesis by Escherichia coli. Biochim. biophys. Acta (Amst.) 13, 381 (1954).

  4. Boyce, R. P., Setlow, R. B.: A simple method of increasing the incorporation of thymidine into the deoxyribonucleic acid of Escherichia coli. Biochim. biophys. Acta (Amst.) 61, 618 (1962).

  5. Brockman, R. W., Davis, J. M., Stutts, P.: Metabolism of uracil and 5-fluorouracil by drugsensitive and by drug-resistant bacteria. Biochim. biophys. Acta (Amst.) 40, 22 (1960).

  6. Cohen, S. S., Flaks, J. G., Barner, H. D., Loeb, M. R., Lichtenstein, J.: The mode of action of 5-fluorouracil and its derivatives. Proc. nat. Acad. Sci. (Wash.) 44, 1004 (1958).

  7. Crawford, L. V.: Thymine metabolism in strains of Escherichia coli. Biochim. biophys. Acta (Amst.) 30, 428 (1958).

  8. Fangman, W. L., Novick, A.: Mutant bacteria showing efficient utilization of thymidine. J. Bact. 91, 2390 (1966).

  9. Krenitsky, T. A., Barclay, M., Jacquez, J. A.: Specificity of mouse uridine phosphorylase. J. biol. Chem. 239, 805 (1964).

  10. Munch-Petersen, A.: On the catabolism of deoxyribonucleosides in cells and cell extracts of Escherichia coli. Europ. J. Biochem. 6, 432 (1968).

  11. Neuhard, J., Ingraham, J.: Mutants of Salmonella typhimurium requiring cytidine for growth. J. Bact. 95, 2431 (1968).

  12. O'Donovan, Gerard A., Neuhard, J.: Pyrimidine metabolism in microorganisms. Bact. Rev. 34, 278 (1970).

  13. Paege, L. M., Schlenk, F.: Bacterial uracil riboside phosphorylase. Arch. Biochem. Biophys. 40, 42 (1952).

  14. Razzell, W. E., Khorana, H. G.: Purification and properties of a pyrimidine deoxyriboside phosphorylase from Escherichia coli. Biochim. biophys. Acta (Amst.) 28, 562 (1958).

  15. Siminovitch, L., Graham, A. F.: Synthesis of nucleic acid in Escherichia coli. Canad. J. Microbiol. 1, 721 (1955).

  16. Taylor, A. L.: Current linkage map of Escherichia coli. Bact. Rev. 34, 155 (1970).

Download references

Author information

Additional information

Communicated by P. Starlinger

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pritchard, R.H., Ahmad, S.I. Fluorouracil and the isolation of mutants lacking uridine phosphorylase in Escherichia coli: Location of the gene. Molec. Gen. Genet. 111, 84–88 (1971). https://doi.org/10.1007/BF00286557

Download citation

Keywords

  • Enzyme
  • Escherichia Coli
  • Cell Growth
  • Uridine
  • Phosphorylase