Advertisement

Chromosoma

, Volume 88, Issue 3, pp 208–215 | Cite as

Chromosome and C-heterochromatin polymorphisms in the Italian newt, Triturus italicus

  • Stefania Bucci-Innocenti
  • Matilde Ragghianti
  • Giorgio Mancino
Article

Abstract

A combined chromosome and C-heterochromatin polymorphism in pair 12 in the complement of the newt species, T. italicus is described. The C-heterochromatin polymorphism is presumably due to a loss in the proximal C-band, whereas the chromosomal polymorphism has its origin in two different independent pericentric inversions both including the centromere and the proximal C-band of chromosome 12. The double-inversion polymorphism has a wide distribution over the range and follows a clear bipolarity between a northern area where the karyotype is homomorphic for the standard type of pair 12 (ST/ST) and an opposite area where the ST type is completely replaced by variant M1 and M2 metacentric chromosomes 12. Various karyophylogenies are possible, but the simplest and the most probable presumes an ancestral karyotype of ST/ST and a mechanism of gradual replacement of the heterobrachial chromosome ST by two independent pericentric inversions. The present data are discussed in relation to existing theories on karyological evolution of Urodeles and the functional significance of telocentric chromosomes suggested by Sessions et al. (1982).

Keywords

Developmental Biology Wide Distribution Functional Significance Northern Area Pericentric Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrighi FE, Hsu TC (1971) Localization of heterochromatin in human chromosomes. Cytogenetics 10:81–86Google Scholar
  2. Birstein VJ (1982) Structural characteristics of genome organization in amphibians: differential staining of chromosomes and DNA structure. J Mol Evol 18:73–91Google Scholar
  3. Bucci-Innocenti S, Ragghianti M, Mancino G (1983) Investigation of karyology and hybridization of Triturus boscai and T. vittatus, with a reinterpretation of the species groups within the genus Triturus (Caudata, Salamandridae). Copeia 3:662–672Google Scholar
  4. Gall JG (1966) Techniques for the study of lampbrush chromosomes. In: Prescott D (ed) Methods in cell physiology, vol 2. New York, Academic Press p 37Google Scholar
  5. Hedrick PW (1981) The establishment of chromosomal variants. Evolution 35:322–332Google Scholar
  6. John B, King M (1977) Heterochromatin variation in Cryptobothrus chrysophorus. I. Chromosome differentiation in natural populations. Chromosoma 64:219–239Google Scholar
  7. Keyl H-G (1965) A demonstrable local and geometric increase in the chromosomal DNA of Chironomus. Experientia 21:191–193Google Scholar
  8. Kezer J, Sessions SK (1979) Chromosome variation in the plethodontid salamander, Aneides ferreus. Chromosoma 71:65–80Google Scholar
  9. Léon PE, Kezer J (1978) Localization of 5S RNA genes on chromosomes of plethodontid salamanders. Chromosoma 65:213–230Google Scholar
  10. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas (Ld) 52:201–220Google Scholar
  11. Macgregor HC (1982) Big chromosomes and speciation amongst Amphibia. In: Dover GA, Flavell RB (eds) Genome evolution. New York, Academic Press, p 325Google Scholar
  12. Mancino G, Barsacchi G (1969) The maps of the lampbrush chromosomes of Triturus (Amphibia Urodela). III. Triturus italicus. Ann Embryol Morphogen 2:355–377Google Scholar
  13. Mancino G, Ragghianti M, Bucci-Innocenti S (1977) Cytotaxonomy and cytogenetics in European newt species. In: Taylor DH, Guttman SI (eds) The reproductive biology of amphibians New York Plenum Press, p 411Google Scholar
  14. Mancino G, Ragghianti M, Bucci-Innocenti S (1979) Experimental hybridization within the genus Triturus (Urodela: Salamandridae). III. Evidence for crossing-over, true chiasmata and chromosomal homologies in the spermatogenesis of F1 species hybrids, T. cristatus carnifex ♀ x T. marmoratus ♂. Chromosoma 73:207–226Google Scholar
  15. Morescalchi A (1975) Chromosome evolution in the caudate Amphibia. Evol Biol 8:339–387Google Scholar
  16. Nardi I, Ragghianti M, Mancino G (1973) Banding patterns in newt chromosomes by the Giemsa stain. Chromosoma 40: 321–331Google Scholar
  17. Ragghianti M, Bucci-Innocenti S, Mancino G (1980) Chromosome polymorphism in the Italian newt, Trituturs italicus. Chromosoma 77:333–345Google Scholar
  18. Schmid M (1980) Chromosome evolution in Amphibia. In: Müller H (ed) Cytogenetics of vertebrates. Basel, Birkhäuser p 4Google Scholar
  19. Sessions SK, Léon PE, Kezer J (1982) Cytogenetics of the Chinese giant salamander, Andrias davidianus (Blanchard): the evolutionary significance of cryptobranchoid karyotypes. Chromosoma 86:341–357Google Scholar
  20. Sybenga J (1972) General cytogenetics. North-Holland Publ. Co. Amsterdam-London, American Elsevier Publ. Co. Inc. New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Stefania Bucci-Innocenti
    • 1
  • Matilde Ragghianti
    • 1
  • Giorgio Mancino
    • 1
  1. 1.Institute of Histology and EmbryologyUniversity of PisaPisaItaly

Personalised recommendations