Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Mechanisms of chromosome banding

V. Quinacrine banding

  • 93 Accesses

  • 53 Citations

Abstract

A series of biochemical investigations were undertaken to determine the mechanism of Q-banding. The results were as follows: 1. In agreement with previous studies, highly AT-rich DNA, such as poly(dA)-poly(dT), markedly enhanced quinacrine fluorescence while GC containing DNA quenched fluorescence. These effects persisted at DNA concentrations comparable to those in the metaphase chromosome. 2. Studies of quinacrine-DNA complexes in regard to the hypochromism of quinacrine, DNA Tm, DNA viscosity, and equilibrium dialysis, indicated the quinacrine was bound by intercalation with relatively little side binding. 3. Single or double stranded nucleotide polymers, in the form of complete or partial helices, were 1000-fold more effective in quenching than solutions of single nucleotides, suggesting that base stacking is required for quenching. 4. Studies of polymers in the A conformation, such as transfer RNA and DNA-RNA hybrids, indicated that marked base tilting does not affect the ability of nucleic acids to cause quenching or enhancement of quinacrine fluorescence. 5. Salts inhibit the binding of quinacrine to DNA. 6. Spermine, polylysine and polyarginine, which bind in the small groove of DNA, inhibited quinacrine binding and quenching, while histones, which probably bind in the large groove, had little effect. This correlated with the observation that removal of histones with acid has no effect on Q-banding. 7. Mouse liver chromatin was separated into five fractions. At concentrations of quinacrine from 2×10−6 to 2×10−5 M all fractions inhibited to varying degrees the ability of the chromatin DNA to bind quinacrine and quench quinacrine fluorescence. At saturating levels of quinacrine two fractions, the 400 g pellet (rich in heterochromatin) and a dispersed euchromatin supernatant fraction, showed a decreased number of binding sites for quinacrine. These two fractions were also the richest in non-histone proteins. 8. DNA isolated from the different fractions all showed identical quenching of quinacrine fluorescence. 9. Mouse GC-rich, mid-band, AT-rich, and satellite DNA, isolated by CsCl and Cs2SO4-Ag+ centrifugation all showed identical quenching of quinacrine fluorescence, indicating that within a given organism, except for very AT or GC-rich satellites, the variation in base composition is not adequate to explain Q-banding. — We interpret these results to indicate that: (a) quinacrine binds to chromatin by intercalation of the three planar rings with the large group at position 9 lying in the small groove of DNA, (b) most pale staining regions are due to a decrease binding of quinacrine, and (c) this inhibition of binding is predominately due to non-histone proteins.

This is a preview of subscription content, log in to check access.

References

  1. Adler, A. J., Fasman, G. C.: Circular dichroism studies of lysine-rich histone F1-deoxyribonucleic acid complexes. Effects of salts and dioxane upon configuration. J. phys. Chem. 75, 1516–1526 (1971)

  2. Allen, S. S., Grey, D. M., Robert, G. P., Tinoco, I.: The ultraviolet circular dichroism of synthetic and natural DNAs and analysis of spectra for sequence information. Biopolymers 11, 853–879 (1972)

  3. Armstrong, R. W., Kurucsev, T., Strauss, U. P.: The interaction between acridine dyes and deoxyribonucleic acid. J. Amer. chem. Soc. 92, 3174–3181 (1970)

  4. Arnott, S.: The geometry of nucleic acids. Progr. Biophys. molec. Biol. 21, 265–319 (1970)

  5. Arnott, S., Fuller, W., Hodgson, A., Prutton, I.: Molecular conformations and structure transitions of RNA complementary helices and their possible biological significance. Nature (Lond.) 220, 561–564 (1968)

  6. Arnott, S., Hutchison, F., Spencer, M., Wilkins, M. H. F., Fuller, W., Langridge, R.: X-ray diffraction studies of double helical ribonucleic acid. Nature (Lond.) 211, 227–232 (1966)

  7. Barr, G. F., Mikel, U., Engler, W. F.: Correlates of chromosomal banding at the level of ultrastructure. In: Chromosome identification—technique and applications in biology and medicine (T. Caspersson and L. Zech, eds.), p. 280–289. New York, N. Y.: Academic Press, Inc. 1973

  8. Berlowitz, L.: Analysis of histone in situ in developmentally inactivated chromatin. Proc. nat. Acad. Sci. (Wash.) 54, 476–480 (1965)

  9. Blake, A., Peacocke, A. R.: The interaction of aminoacridines with nucleic acids. Biopolymers 6, 1225–1253 (1968)

  10. Bobrow, M., Madan, K.: The effects of various banding procedures on human chromosomes, studies with acridine orange. Cytogenet. Cell Genet. 12, 145–156 (1973)

  11. Bostock, C. J., Christie, S.: Quinacrine fluorescence staining of chromosomes and its relationship to DNA base composition. Exp. Cell Res. 86, 157–161 (1974)

  12. Bostock, C. J., Prescott, D. M.: Buoyant density of DNA synthesized at different stages of the S phase of mouse L-cells. Exp. Cell Res. 64, 267–274 (1971)

  13. Bradley, D. F., Felsenfeld, G.: Aggregation of an acridine dye on native and denatured deoxyribonucleates. Nature (Lond.) 184, 1920–1922 (1959)

  14. Caspersson, T., Zech, L., Johansson, C., Modest, E. J.: Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma (Berl.) 30, 215–227 (1970)

  15. Chang, C., Weiskopf, M., Li, H. J.: Conformation studies of nucleoprotein. Circular dichroism of deoxyribonucleic acid base pairs bound by polylysine. Biochemistry 12, 3028–3032 (1973)

  16. Cohen, G., Eisenberg, H.: Viscosity and sedimentation study of sonicated DNA-proflavine complexes. Biopolymers 8, 45–55 (1969)

  17. Comings, D. E.: Heterochromatin of the Indian muntjac: Replication, condensation, DNA ultracentrifugation, fluorescent and heterochromatin staining. Exp. Cell Res. 67, 441–460 (1971)

  18. Comings, D. E.: Replicative heterogeneity of mammalian DNA. Exp. Cell Res. 71, 106–112 (1972a)

  19. Comings, D. E.: The structure and function of chromatin. Advanc. Human Genet. 3, 237–431 (1972b)

  20. Comings, D. E.: Biochemical mechanisms of chromosome banding and color banding with acridine-orange. In: Chromosome identification—techniques and applications in biology and medicine (T. Caspersson and L. Zech, eds.), p. 293–299. New York, N. Y.: Academic Press, Inc. 1973

  21. Comings, D. E., Avelino, E.: Mechanisms of chromosome banding. II. Histones are not involved. Exp. Cell Res. 86, 202–206 (1974)

  22. Comings, D. E., Avelino, E., Okada, T. A., Wyandt, H. E.: The mechanism of C- and G-banding of chromosomes. Exp. Cell Bes. 77, 469–493 (1973)

  23. Comings, D. E., Okada, T. A.: DNA replication and the nuclear membrane. J. molec. Biol. 75, 609–618 (1973)

  24. Corneo, G., Ginelli, E., Polli, E.: Repeated sequences in human DNA. J. molec. Biol. 48, 319–327 (1970)

  25. Crick, F. H. C., Watson, J. D.: The complementary structure of deoxyribonucleic acid. Proc. roy. Soc. Lond. A 223, 80–96 (1954)

  26. Crothers, D. M., Zimm, B. H.: Theory of the melting transition of synthetic polynucleotides: Evaluation of the stacking free energy. J. molec. Biol. 9, 1–9 (1964)

  27. Dev, V. G., Grewal, M. S., Miller, D. A., Kouri, R. E., Hutton, J. J., Miller, O. J.: The quinacrine fluorescence karyotype of Mus musculus and demonstration of strain differences in secondary constrictions. Cytogenetics 10, 436–451 (1971)

  28. Dev, V. G., Warburton, E., Miller, O. J., Miller, D. A., Erlanger, B. F., Beiser, S. M.: Consistent pattern of binding of anti-adenosine antibodies to human metaphase chromosomes. Exp. Cell Res. 74, 288–293 (1972)

  29. Drummond, D. S., Pritchard, N. J., Simpson-Gildemeister, V. F. M., Peacocke, A. R.: Interaction of aminoacridines with deoxyribonucleic acid. Viscosity of the complexes. Biopolymers 4, 971–987 (1966)

  30. Ellison, J. R., Barr, H. J.: Quinacrine fluorescence of specific chromosome regions: late replication and high AT content in Samoaia leonensis. Chromosoma (Berl.) 36, 375–390 (1972)

  31. Farber, J., Baserga, R., Gabbay, E. J.: The effect of a reporter molecule on chromatin template activity. Biochim. biophys. Res. Commun. 43, 675–681 (1971)

  32. Felsenfeld, G.: Interaction of nucleic acids with cationic substances. In: The molecular basis of neoplasia, p. 104–119. Austin, Texas: University of Texas Press 1962

  33. Feughelman, M., Langridge, R., Seeds, W. E., Stockes, A. R., Wilson, H. R., Hopper, C. W., Wilkins, M. H. F., Barclay, R. K., Hamilton, L. D.: Molecular structure of deoxyribonucleic acid and nucleoprotein. Nature (Lond.) 175, 834–838 (1955)

  34. Fredericq, E., Houssier, C.: Study of the interaction of DNA and acridine orange by various optical methods. Biopolymers 11, 2281–2308 (1972)

  35. Frenster, J. H., Allfrey, V. G., Mirsky, A. E.: Repressed and active chromatin isolated from interphase lymphocytes. Proc. nat. Acad. Sci. (Wash.) 50, 1026–1032 (1963)

  36. Ganner, E., Evans, H. J.: The relationship between patterns of DNA replication and of quinacrine fluorescence in the human chromosome complement. Chromosoma (Berl.) 35, 326–341 (1971)

  37. Gersch, N. F., Jordan, D. O.: Interaction of DNA with aminoacridines. J. molec. Biol. 13, 138–156 (1965)

  38. Golomb, H. M., Bahr, G. F.: Correlation of the fluorescent banding pattern and ultrastructure of a human chromosome. Exp. Cell Res. 84, 121–126 (1974)

  39. Gottesfeld, J. M., Bonner, J., Radda, G. K., Walker, I. O.: Biophysical studies on the mechanism of quinacrine staining of chromosomes. Biochemistry 13, 2937–2945 (1974)

  40. Green, G., Mahler, H. R.: Comparative study of polynucleotides in aqueous and glycol solutions. Biochemistry 9, 368–387 (1970)

  41. Guilbault, G. G.: Practical fluorescence, theory, methods and techniques, p. 26. New York, N. Y.: Marcel Dekker, Inc. 1973

  42. Hanlon, S., Johnson, R. S., Wolf, B., Chan, A.: Mixed conformations of deoxyribonucleic acid in chromatin: a preliminary report. Proc. nat. Acad. Sci. (Wash.) 69, 3262–3267 (1972)

  43. Heneen, W. K., Caspersson, T.: Identification of the chromosomes of rye by distribution patterns of DNA. Hereditas (Lund) 74, 259–272 (1973)

  44. Holcomb, D. N., Tinoco, I.: Conformation of polyriboadenylic acid: pH and temperature dependence. Biopolymers 3, 121–133 (1965)

  45. Ichimura, S., Zama, M., Fujita, H., Ito, T.: The nature of strong binding between acridine orange and deoxyribonucleic acid as revealed by equilibrium dialysis and thermal denaturation. Biochim. biophys. Acta (Amst.) 190, 116–125 (1969)

  46. Jones, K. W., Corneo, G.: Location of satellite and homogeneous DNA sequences on human chromosomes. Nature (Lond.) New Biol. 233, 268–271 (1971)

  47. Kaiser, D., Tabor, H., Tabor, C. W.: Spermine projection of coliphage λ DNA against breakage by hydrodynamic shear. J. molec. Biol. 6, 141–147 (1963)

  48. Kleinwachter, V., Balcarova, Z., Bohacek, J.: Thermal stability of complexes of diaminoacridines with deoxyribonucleic acids of varying base content. Biochim. biophys. Acta (Amst.) 174, 188–201 (1969)

  49. Kleinwachter, V., Koudelka, J.: Thermal denaturation of deoxyribonucleic acid-cridine orange complexes. Biochim. biophys. Acta (Amst.) 91, 539–540 (1964)

  50. Kurnick, N. B., Radcliffe, I. E.: Reaction between DNA and quinacrine and other antimalarials. J. Lab. clin. Med. 60, 669–688 (1962)

  51. LePecq, J.-B., Paoletti, C.: A fluorescent complex between ethidium bromide and nucleic acids. J. molec. Biol. 27, 87–106 (1967)

  52. Lerman, L. S.: Structural considerations in the interaction of DNA and acridines. J. molec. Biol. 3, 18–30 (1961)

  53. Lerman, L. S.: The structure of the DNA-acridine complex. Proc. nat. Acad. Sci. (Wash.) 49, 94–102 (1963)

  54. Lieberman, M. W.: Fractionation of mouse DNA in preparative Ag+-Cs2SO4 gradients. Biochim. biophys. Acta (Amst.) 324, 309–319 (1973)

  55. Lima-de-Faria, A.: Differential uptake of tritiated thymidine into heterochromatin and euchromatin in Melanopus and Secale. J. biophys. biochem. Cytol. 6, 457–466 (1959)

  56. Liquori, A. M., Constantino, L., Crescenzi, V., Elia, V., Giglio, E., Puliti, R., de Santis Savio, M., Vitagliano, V.: Complexes between DNA and polyamines: a molecular model. J. molec. Biol. 24, 113–122 (1967)

  57. Lloyd, P. H., Prutton, R. N., Peacocke, A. R.: Sedimentation studies on the interaction of proflavine with deoxyribonucleic acid. Biochem. J. 107, 353–359 (1968)

  58. Mandel, M.: The interaction of spermine and native deoxyribonucleic acid. J. molec. Biol. 5, 435–441 (1962)

  59. Mandel, M., Schildkraut, C. L., Marmur, J.: Use of density gradient analysis for determining the guanine plus cytosine content for DNA. In: Methods in enzymology, vol. XII B, p. 184–195 (L. Grossman and K. Moldave, eds.). New York, N. Y.: Academic Press, Inc. 1968

  60. Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. molec. Biol. 3, 208–218 (1961)

  61. Marushige, K., Bonner, J.: Fractionation of liver chromatin. Proc. nat. Acad. Sci. (Wash.) 68, 2941–2944 (1971)

  62. Marvin, D. A., Spencer, M., Wilkins, M. H. F., Hamilton, L. D.: The molecular configuration of deoxyribonucleic acid. III. X-ray diffraction study of the C form of the lithium salt. J. molec. Biol. 3, 547–565 (1961)

  63. Mattoccia, E., Comings, D. E.: Buoyant density and satellite composition of DNA of mouse heterochromatin. Nature (Lond.) New Biol. 229, 175–176 (1971)

  64. McKay, R. D. G.: The mechanism of G and C banding in mammalian metaphase chromosomes. Chromosoma (Berl.) 44, 1–14 (1973)

  65. Michelson, A. M., Monny, C., Kovoor, A.: Action of quinacrine mustard on polynucleotides. Biochimie 54, 1129–1136 (1972)

  66. Milman, G., Chamberlain, M., Langridge, R.: The structure of a DNA-RNA hybrid. Proc. nat. Acad. Sci. (Wash.) 57, 1804–1810 (1967)

  67. Natarajan, A. T., Groop, A.: A fluorescence study of heterochromatin and nucleolar organization in the laboratory and tobacco mouse. Exp. Cell Res. 74, 245–250 (1972)

  68. Nelson, R. G., Johnson, W. C.: Conformation of DNA in ethylene glycol. Biochem. biophys. Res. Commun. 41, 211–216 (1970)

  69. Ochoa, M., Jr., Weinstein, I. B.: Spermine inhibition of polypeptide synthesis in a subcellular system derived from the L 1210 mouse ascites leukemia. Biochim. biophys. Acta (Amst.) 95, 176–179 (1965)

  70. Olins, D. E., Olins, A. L.: Model nucleohistones: The interaction of F1 and F2a1 histones and native T7 DNA. J. molec. Biol. 57, 437–455 (1971)

  71. Pachmann, U., Rigler, R.: Quantum yield of acridines interacting with DNA of defined base sequence. Exp. Cell Res. 72, 602–608 (1972)

  72. Peacocke, A. R.: The interaction of acridines with nucleic acids. In: Acridines, (R. Acheson, ed.), 2nd ed., p. 723–757. New York, N. Y.: Interscience Publishers, John Wiley & Sons 1973

  73. Peacocke, A. R., Skerrett, J. N. H.: The interaction of aminoacridines with nucleic acids. Faraday Soc. (Lond.) Trans. 52, 261–279 (1956)

  74. Rodman, T. C., Tahiliani, S.: The Feulgen banded karyotype of the mouse: Analysis of the mechanisms of banding. Chromosoma (Berl.) 42, 37–56 (1973)

  75. Rowley, J. D., Bodmer, W. F.: Relationship of centromeric heterochromatin to fluorescent banding patterns of metaphase chromosomes in the mouse. Nature (Lond.) 231, 503–506 (1971)

  76. Scatchard, G.: The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51, 660–672 (1949)

  77. Schreck, R. R., Warburton, D., Miller, O. J., Beiser, S. M., Erlanger, B. F.: Chromosome structure as revealed by a combined and immunochemical procedure. Proc. nat. Acad. Sci. (Wash.) 70, 804–807 (1973)

  78. Selander, R.-K.: Interaction of quinacrine mustard with mononucleotides and polynucleotides. Biochem. J. 131, 749–755 (1973)

  79. Selander, R.-K., de la Chapelle, A.: The fluorescence of quinacrine mustard with nucleic acids. Nature (Lond.) New Biol. 245, 240–243 (1973)

  80. Simpson, R. T.: Interaction of a reporter molecule with chromatin. Evidence suggesting that the proteins of chromatin do not occupy the minor groove of deoxyribonucleic acid. Biochemistry 9, 4814–4819 (1970)

  81. Simpson, R. T., Reeck, G. R.: A comparison of the proteins of condensed and extended chromatin fractions of rabbit liver and calf thymus. Biochemistry 12, 3853–3858 (1973)

  82. Southern, D. M.: Base sequence and evolution of guinea-pig α-satellite DNA. Nature (Lond.) 227, 794–798 (1970)

  83. Studdert, D. S., Patroni, M., Davis, R. C.: Circular dichroism of DNA: Temperature and salt dependence. Biopolymers 11, 761–779 (1972)

  84. Suwalsky, M., Traub, W.: A comparative X-ray study of a nucleoprotamine and DNA complexes with polylysine and polyarginine. Biopolymers 11, 2223–2231 (1972)

  85. Suwalsky, M., Traub, W., Subirana, J. A.: An X-ray study of the interaction of DNA with spermine. J. molec. Biol. 42, 363–373 (1969)

  86. Tabor, H., Tabor, C. W.: Spermidine, spermine and related amines. Pharmacol. Rec. 16, 245–300 (1964)

  87. Tinoco, I.: Hypochromism in polynucleotides. J. Amer. chem. Soc. 82, 4785–4790 (1960)

  88. Tobia, A., Schildkraut, C. L., Maio, J. J.: DNA replication in synchronized cultured mammalian cells. I. Time of synthesis of molecules of different average guanine + cytosine content. J. molec. Biol. 54, 499–515 (1971)

  89. Tunis-Schneider, M. J. B., Maestre, M. J.: Circular dichroism spectra of oriented and unoriented deoxyribonucleic acid films—A preliminary study. J. molec. Biol. 52, 521–541 (1970)

  90. Van Holde, K. E.: Physical Biochemistry, p. 168–170. Englewood Cliffs, N. J.: Prentice-Hall, Inc. 1971

  91. Weisblum, B., deHaseth, P. L.: Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylate-rich regions in DNA. Proc. nat. Acad. Sci. (Wash.) 69, 629–632 (1972)

  92. Weisblum, B., deHaseth, P. L.: Nucleotide specificity of the quinacrine staining reaction for chromosomes. Chromosomes today 4, 35–51 (1973)

  93. Wilkins, M. H. F.: Physical studies on the molecular structure of deoxyribonucleic acid. Cold Spr. Harb. Symp. quant. Biol. 21, 75–90 (1956)

  94. Yang, J. T., Samejima, T.: Optical rotary dispersion and circular dichroism of nucleic acids. Progr. Nucleic Acid Res. and molec. Biol. 9, 223–300 (1969)

  95. Yunis, J. J., Sanchez, O.: G-banding and chromosome structure. Chromosoma (Berl.) 44, 15–23 (1973)

  96. Zakharov, A. F., Egolina, N. A.: Differential spiralization along mammalian chromosomes. I. BUdR revealed differentiation in Chinese hamster chromosomes. Chromosoma (Berl.) 38, 341–365 (1972)

  97. Zimm, B. H., Crothers, D. M.: Simplified rotating cylinder viscometer for DNA. Proc. nat. Acad. Sci. (Wash.) 48, 905–911 (1962)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Comings, D.E., Kovacs, B.W., Avelino, E. et al. Mechanisms of chromosome banding. Chromosoma 50, 111–145 (1975). https://doi.org/10.1007/BF00283236

Download citation

Keywords

  • Quinacrine
  • Polyarginine
  • Small Groove
  • Pale Staining
  • Large Groove