Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Die umkehrung der stabilitätssätze von Lagrange-Dirichlet und Routh

  • 67 Accesses

  • 31 Citations


The Lagrange-Dirichlet theorem states that the equilibrium position of a discrete, conservative mechanical system is stable if the potential energy U(q) assumes a minimum in this position. Although everything seems to indicate that the equilibrium is always unstable in case of a maximum of the potential energy, this has yet to be proven. In all existing instability theorems the function U(q) has to satisfy additional requirements which are very restrictive.

In this paper instability is proved in the case of a maximum of U(q)εC 2, without further restrictions. The instability follows directly from the existence of certain types of motions which are not found as solutions of differential equations, but as the solutions of a variational problem. Existence theorems are given for the variational problem, based on a result found by Carathéodory.

In similar way an “inversion” of Routh's theorem on the stability of steady motions in systems with cyclic coordinates is also given. The result obtained here is not as general as the inversion of the Lagrange-Dirichlet theorem because the equations of motion are of a more complex type.

This is a preview of subscription content, log in to check access.


  1. Bishop, R. L., & R. J. Crittenden [1] Geometry of Manifolds. New York: Academic Press 1964.

  2. Bourbaki, N. [1] Éléments de mathématique, Fasc. IX. Paris: Hermann 1958.

  3. Buchdahl, H. A. [1] The Concepts of Classical Thermodynamics. Cambridge: University Press 1966.

  4. Carathéodory, C. [1] Variationsrechnung und partielle Differentialgleichungen erster Ordnung. Leipzig: B. G. Teubner 1935.

  5. Cesar, M. O. [1] Estabilidade reduzida de movimentos estacionários, Tese de doutoramento. Escola Politécnica da Universidade de São Paulo (Brasil), São Paulo 1967.

  6. Cesar, M. O. [2] Reduced Liapunov Stability of Steady Motions, Research in Celestial Mechanics and Differential Equations. Annual Technical Report No. 2, S. 96–122, May 1969, University of São Paulo, Brazil.

  7. Chetayev, N. G. [1] Sur la réciproque du théorème de Lagrange. Comptes Rendus (1930).

  8. Chetayev, N. G. [2] Zur Frage der Umkehrung des Satzes von Lagrange (russisch). Sammlung wiss. Arbeiten des Kasaner Instituts für Flugwesen 2 (1934).

  9. Chetayev, N. G. [3] The Stability of Motion. New York: Pergamon Press 1961.

  10. Connel, G. M. [1] Asymptotic stability of second-order linear systems with semidefinite damping. AIAA Journal 7, 1185–1187 (1969).

  11. Courant, R., & D. Hilbert [1] Methoden der Mathematischen Physik, Bd. 1 und 2. Berlin-Heidelberg-New York: Springer 1968.

  12. Crittenden, R. J., siehe Bishop, R. L., & R. J. Crittenden Dirichlet, G. L. [1] Werke, Bd. 2. Berlin 1897.

  13. Crittenden, R. J., siehe Bishop, R. L., & R. J. Crittenden, Dirichlet, G. L. [2] Sur la stabilité de l'equilibre, Note II. Anhang zu: Lagrange, J. L., Mécanique Analitique. Paris: Blanchard 1965.

  14. Gantmacher, F. R. [1] Matrizenrechnung, Bd. 1, Berlin 1958: VEB Deutscher Verlag der Wissenschaften.

  15. Green, A. E., siehe Shield, R. T., & A. E. Green, Hagedorn, P. [1] Zur Umkehrung des Satzes von Lagrange über die Stabilität. Zeitschrift für Angew. Math. und Physik, 21 841–845 (1970).

  16. Hahn, W. [1] Theory and Application of Liapunov's Direct Method. Prentice-Hall, Englewood-Cliffs, N.J. 1963.

  17. Hahn, W. [2] Stability of Motion. Berlin-Heidelberg-New York: Springer 1967.

  18. Hamel, G. [1] Theoretische Mechanik. Berlin-Heidelberg-New York: Springer 1967.

  19. Hilbert, D., siehe Courant, R., & D. Hilbert, Hopf, H., & W. Rinow [1] Über den Begriff der vollständigen differentialgeometrischen Fläche. Comment. Math. Helv. 3, 209–225 (1931).

  20. Kilmister, C. W. [1] Hamiltonian Dynamics. London: Longmans 1964.

  21. Koiter, W. T. [1] The concept of stability of equilibrium for continuous bodies. Proc. Koninkl. Nederl. Akademie van Wetenschappen, Series B, 66, 173–177 (1963).

  22. Koiter, W. T. [2] The energy criterion of stability for continuous elastic bodies. Proc. Koninkl. Nederl. Akademie van Wetenschappen, Series B, 68, 178–202 (1965).

  23. Koiter, W. T. [3] On the instability of equilibrium in the absence of a minimum of the potential energy. Proc. Koninkl. Nederl. Akademie van Wetenschappen, Series B, 68 (1965).

  24. Lagrange, J. L. [1] Mécanique Analitique. Libraire Sc. Techn. A. Paris: Blanchard 1965 (1. Ausgabe: 1788).

  25. Lamb, H. [1] Higher Mechanics. Cambridge: University Press 1929.

  26. Lanczos, C. [1] Variational Principles in Mechanics. In: Handbook of Engineering Mechanics, Herausgeber: Flügge, W., New York: McGraw-Hill 1962.

  27. La Salle, J., & S. Lefschetz [1] Stability by Liapunow's Direct Method. New York: Academic Press 1961.

  28. Ljapunow, A. M. [1] Problème général de la stabilité du mouvement. Ann. Fac. Sci. Toulouse (2) 9, S. 203–474. Neudruck: Ann. Math. Studies 17, Princeton 1949.

  29. Lefschetz, S., siehe La Salle, J., & S. Lefschetz, Malkin, J. G. [1] Theorie der Stabilität einer Bewegung (aus dem russ.). Berlin: Akademie-Verlag 1959.

  30. Movchan, A. A. [1] Stability of processes with respect to two metrics. PMM, J. appl. math. mech. (engl. transl.) 24, 6, 1506–1524 (1960).

  31. Movchan, A. A. [2] Über die Stabilität der Bewegung kontinuierlicher Körper. Satz von Lagrange und Anwendungen (russisch). Inzenernyj sbornik 29, 3 (1960).

  32. Müller, C. P. [1] Asymptotische Stabilität von linearen Systemen mit positiv semi-definiter Dämpfungsmatrix. Auf der GAMM-Tagung in Delft, Holland, 1970, Gehaltener Vortrag.

  33. Painlevé, P. [1] Sur la réciproque du théorème de Lagrange. Comptes Rendus 25, 2, 1021–1024 (1897).

  34. Pars, L. A. [1] A Treatise on Analytical Dynamics. London: Heinemann 1965.

  35. Pars, L. A. [2] An Introduction to the Calculus of Variations. London: Heinemann 1962.

  36. Pringle, R. [1] On the Capture, Stability and Passive Damping of Artificial Satellites, SUDAER No. 181, Dep. of Electrical Engineering, Stanford University, California, April 1964.

  37. Pringle, R. [2] Stability of Damped Mechanical Systems. AIAA Journal, 2, 2, 363–364 (1965).

  38. Pringle, R. [3] On the Stability of a Body with Connected Moving Parts, AIAA Journal, 4, 8, 1395–1404 (1966).

  39. Rinow, W., siehe Hopf, H., & W. Rinow, Risito, C. [1] Sulla stabilità di un insieme di moti merostatici, Rend. Mat. 2, 6, 597–608 (1969).

  40. Routh, E. J. [1] Treatise on the Stability of Motion. London 1877.

  41. Routh, E. J. [2] Treatise on the Dynamics of a System of Rigid Bodies (Advanced Part). New York: Dover 1955 (1. Ausgabe: 1860).

  42. Rubanovskii, V. N., & S. Ia. Stepanov [1] On the Routh Theorem and the Chetaev Method for Constructing the Liapunov Function from the Integrals of the Equations of Motion. PMM, J. appl. math. mech. (Engl. transl.) 33, 5, 882–890 (1968).

  43. Rumiantsev, V. V. [1] On the stability of steady motions. PMM, J. appl. math. mech. (engl. transl.) 30, 5, 1090–1101 (1966).

  44. Rumiantsev, V. V. [2] Steady-motion stability of free systems. Cosmic Research 6, 5, 533–537 (1968).

  45. Rumiantsev, V. V. [3] On the Stability of Steadystate Motions. PMM, J. appl. math. mech. (Engl. transl.) 32, 3, 517–521 (1968).

  46. Ryan, P. J. [1] Homogeneity and some curvature conditions for hypersurfaces. Doct. Diss., Brown University, 1968.

  47. Salvadori, L. [1] Un'osservazione su di un criterio di stabilità del Routh. Rend. Acc. Sc. Fis. e Mat. (4), 20, 269–272 (1953).

  48. Salvadori, L. [2] Criteri d'instabilità per i moti merostatici di un sistema olonomo. Rend. Acc. Sc. Fis. e Mat. (4), 27, 535–542 (1960).

  49. Salvadori, L. [3] Sulla stabilità dei moti merostatici di un sistema olonomo in presenza di forze dissipative anche non lineari, Rend. Acc. Sc. Fis. e Mat. (4), 30 (1963).

  50. Salvadori, L. [4] Sulla stabilità assintotica delle posizione d'equilibrio di un sistema olonomo in presenza di forze dissipative anche nonlineari. Rend. Acc. Sc. Fis. e Mat. (4), 30 (1963).

  51. Salvadori, L. [5] Sull'estensione ai sistemi dissipativi del criterio di stabilità del Routh. Ricerche di Mat. 15, 162–167 (1966).

  52. Salvadori, L. [6] Sulla stabilità dell'equilibrio nella Meccanica dei sistemi olonomi. Bollettino dell' U.M.I., Serie IV, 1, 3, 333–346 (1968).

  53. Salvadori, L. [7] Sulla stabilità del movimento, Le Matematiche, 24, 1, 218–239 (1969).

  54. Shield, R. T., & A. E. Green [1] On certain methods in the stability theory of continuous systems. Arch. Rational Mech. Anal. 12, 4, 354–360 (1963).

  55. Siegel, C. L. [1] Vorlesungen über Himmelsmechanik. Berlin-Göttingen-Heidelberg: Springer 1956.

  56. Sokolova, L. E. [1] Asymptotic stability of the equilibria of gyroscopic systems with partial dissipation. PMM, J. appl. math, mech. (engl. transl.) 32, 2, 306–311 (1968).

  57. Stepanov, S. Ia., siehe Rubanovskii, V. N., & S. Ia. Stepanov, Synge, J. L. [1] Classical Dynamics. In: Handbuch der Physik, Bd. III/1, Herausgeber: Flügge, S. Berlin-Göttingen-Heidelberg: Springer 1960.

  58. Tait, P. G., siehe Thomson, W., & P. G. Tait Thomson, W. (Lord Kelvin), & P. G. Tait [1] Principles of Mechanics and Dynamics. New York: Dover 1962 (1. Ausgabe 1912: „Treatise on Natural Philosophy”).

  59. Van Chzhao-Lin [1] On the converse of Routh's theorem. PMM, J. appl. math. mech. (engl. transl.) 27, 5, 1354–1360 (1963).

  60. Whittaker, E. T. [1] A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge: University Press 1959 (1. Ausgabe: 1904).

  61. Wintner, A. [1] The Analytical Foundations of Celestial Mechanics. Princeton: University Press 1941.

  62. Zajak, E. E. [1] Comments on “stability of damped mechanical systems” and a further extension. AIAA Journal 3, 9, 1749–1750 (1965).

Download references

Author information

Additional information

Vorgelegt von C. Truesdell

Von der Fakultät für Mathematik der Universität Karlsruhe (TH) angenommene Habilitationsschrift.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hagedorn, P. Die umkehrung der stabilitätssätze von Lagrange-Dirichlet und Routh. Arch. Rational Mech. Anal. 42, 281–316 (1971). https://doi.org/10.1007/BF00282334

Download citation