Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The influence of DNA content and nuclear volume on the frequency of radiation-induced chromosome aberrations in Bufo species

  • 34 Accesses

  • 16 Citations

Abstract

The frequency of chromosome aberrations was compared in X-irradiated blood lymphocytes of Bufo marinus, B. calamita and B. pardalis which have similar chromosome numbers (2n=22) and karyotypes but differ in chromosomal DNA content and nuclear volume. — For each species the yield, per cell of centric exchange aberrations (dicentrics+rings) and of deletions (interstitial and terminal) increased approximately as the 1.5th power of the dose. — The 55% higher chromosomal DNA content of B. pardalis compared with both B. marinus and B. calamita resulted in the same increase in the frequency of deletions as a 55% increase in radiation dose, approximately doubling the yield. Both factors probably lead to a similar increase in the frequency of primary lesions from which the deletions are derived. — In contrast, an increase in chromosomal DNA content did not result in a higher yield of dicentric and ring exchanges, probably because the greater nuclear volume of B. pardalis (twice that of the other species) offset the potential increase in exchanges by increasing the average distance between chromosomes and chromosome arms. The data support the hypothesis that, in order to be involved in exchange, chromosome regions must be close together at the time of irradiation. The frequency of deletions is unaffected by changes in nuclear volume.

This is a preview of subscription content, log in to check access.

References

  1. Atkin, N. B., Mattinson, G., Beçak, W., Ohno, S.: The comparative DNA content of 19 species of placental mammals, reptiles and birds. Chromosoma (Berl.) 17, 1–10 (1965).

  2. Beckert, W. H., Doyle, B. W.: Anuran karyotype methodology. I. The karyotype of Bufo marinus. Canad. J. Genet. Cytol. 9, 297–301 (1967).

  3. Bender, M. A., Prescott, D. M.: DNA synthesis and mitosis in cultures of human peripheral leucocytes. Exp. Cell Res. 27, 221–229 (1962).

  4. Bennett, M. D., Rees, H.: Natural and induced changes in chromosome size and mass in meristems. Nature (Lond.) 215, 93–94 (1967).

  5. Bishop, C. J.: The influence of polyploidy on the X-ray sensitivity of cells. Canad. J. Bot. 30, 139–146 (1952).

  6. Brewen, J. G., Brock, R. D.: The exchange hypothesis and chromosome-type aberrations. Mutation Res. 6, 245–255 (1968).

  7. Buckton, K. E., Pike, M. C.: Chromosome investigations on lymphocytes from irradiated patients: Effects of time in culture. Nature (Lond.) 202, 714–715 (1964).

  8. Catcheside, D. G., Lea, D. E., Thoday, J. M.: The production of chromosomal structural changes in Tradescantia microspores in relation to dosage, intensity and temperature. J. Genet. 47, 137–149 (1946).

  9. Conger, A. D., Johnston, A. H.: Polyploidy and radiosensitivity. Nature (Lond.) 178, 271 (1956).

  10. Davies, D. R., Evans, H. J.: The role of genetic damage in radiation-induced cell lethality. In: Advances in radiation biology, vol. 2, p. 243–355 (eds. L. G. Augenstein, R. Mason and M. R. Zelle). London and New York: Academic Press 1966.

  11. Deeley, E. M., Richards, B. M., Walker, P. M. B., Davies, H. G.: Measurements of Feulgen stain during the cell cycle with a new photo-electric scanning device. Exp. Cell Res. 6, 569–572 (1954).

  12. Evans, E. P.: The frequency of X-ray induced chromosomal aberrations in pollen cells of diploid, triploid and tetraploid clones of Tradescantia bracteata. University of Southampton Ph. D. Thesis 1963.

  13. Evans, H. J.: Chromatid aberrations induced by gamma irradiation. I. The structure and frequency of chromatid interchanges in diploid and tetraploid cells of Vicia faba. Genetics 46, 257–275 (1961).

  14. —: A simple microtechnique for obtaining human chromosome preparations with some comments on DNA replication in sex chromosomes of goat, cow and, pig. Exp. Cell Res. 38, 511–516 (1965).

  15. —: Repair and recovery from chromosome damage after fractionated X-ray dosage. In: Genetical aspects of radiosensitivity, p. 31–45. Vienna: International Atomic Energy Agency 1966.

  16. —: Dose-response relations from in vitro studies. In: Human radiation cytogenetics, p. 20–36 (eds. H. J. Evans, W. M. Court Brown and A. S. McLean). Amsterdam: North-Holland 1967.

  17. — Sparrow, A. H.: Nuclear factors affecting radiosensitivity. II. Dependence on nuclear and chromosome structure and organisation. Brookhaven Symp. Biol. 14, 101–127 (1961).

  18. Heddle, J. A., Evans, H. J., Scott, D.: Sampling time and the complexity of the human leukocyte culture system. In: Human radiation cytogenetics, p. 6–19 (eds. H. J. Evans, W. M. Court Brown and A. S. McLean). Amsterdam: North-Holland Publ. Comp. 1967.

  19. Hungerford, D. A., Donnelly, A. J., Nowell, P. C., Beck, S.: The chromosome constitution of a human phenotypic intersex. Amer. J. hum. Genet. 11, 215–236 (1959).

  20. Lane, G. R., Evans, E. P.: X-ray induction of chromosome aberrations in relation to nuclear volume in Tradescantia bracteata. In: Chromosomes today, vol. 1, p. 131–140 (eds. C. D. Darlington and K. R. Lewis). Edinburgh and London: Oliver and Boyd 1966.

  21. Lea, D. E.: Actions of radiations on living cells, p. 249–252. Cambridge: University Press 1955.

  22. Ling, N. R.: Lymphocyte stimulation. Cambridge: University Press 1968.

  23. Marshak, A. L.: The effect of X-rays on chromosomes in mitosis. Proc. nat. Acad. Sci. (Wash.) 23, 362–369 (1937).

  24. Martin, P. G., Hayman, D. L.: A quantitative method for comparing the karyo-types of related species. Evolution (Lawrence, Kansas) 19, 157–161 (1965).

  25. Mirsky, A. E., Ris, H.: Variable and constant components of chromosomes. Nature (Lond.) 163, 666–667 (1949).

  26. Moore, J. A.: Abnormal combinations of nuclear and cytoplasmic systems in frogs and toads. Advanc. Genet. 7, 139–182 (1955).

  27. Östergren, G., Morris, R., Wakonig, T.: A study in Hyacinthus on chromosome size and breakability by X-rays. Hereditas (Lund) 44, 1–17 (1958).

  28. Revell, S. H.: The accurate estimation of chromatid breakage and its relevance to a new interpretation of chromatid aberrations induced by ionizing radiations. Proc. roy. Soc. Lond. B 150, 563–589 (1959).

  29. Rick, C. M.: On the nature of X-ray induced deletions in Tradescantia chromosomes. Genetics 25, 466–482 (1940).

  30. Rothfels, K., Sexsmith, E., Heimburger, M., Krause, M. O.: Chromosome size and DNA content of species of Anemone L. and related genera (Ranunculaceae). Chromosoma (Berl.) 20, 54–74 (1966).

  31. Sabin, F. R.: Studies of living human blood-cells. Bull. Johns Hopk. Hosp. 34, 278–288 (1923).

  32. Sasaki, M. S., Norman, A.: Proliferation of human lymphocytes in culture. Nature (Lond.) 210, 913–914 (1966).

  33. Sax, K.: An analysis of X-ray induced chromosomal aberrations in Tradescantia. Genetics 25, 41–68 (1940).

  34. Scott, D., Sharpe, H., Batchelor, A. L., Evans, H. J., Papworth, D. G.: Radiation induced chromosome damage in human peripheral blood lymphocytes in vitro. I. RBE and dose-rate studies with fast neutrons. Mutation Res. 8, 367–381 (1969).

  35. Sharpe, H. B. A.: Pitfalls in the use of chromosome aberration analysis for biological radiation dosimetry. Brit. J. Radiol. 42, 943–944 (1969).

  36. Simpson, W. C.: An experimental analysis of the Altmann technic of freezing-drying. Anat. Rec. 80, 173–189 (1941).

  37. Sparrow, A. H.: Relationship between chromosome volume and radiation sensitivity in plant cells. In: Cellular radiation biology, p. 199–218 Baltimore: Williams & Wilkins 1965.

  38. — Schairer, L. A., Sparrow, R. C.: Relationship between nuclear volumes, chromosome numbers, and relative radiosensitivities. Science 141, 163–166 (1963).

  39. Ullerich, F. H.: Karyotyp und DNS-Gehalt von Bufo bufo, B. viridis, B. bufo x B. viridis und B. calamita (Amphibia, Anura). Chromosoma (Berl.) 18, 316–342 (1966).

  40. —: Weitere Untersuchungen über Chromosomenverhältnisse und DNS-Gehalt bei Anuren (Amphibia). Chromosoma (Berl.) 21, 345–368 (1967).

  41. Volpe, E. P., Gebhardt, B. M.: Somatic chromosomes of the marine toad, Bufo marinus (Linné). Copeia (Wash.) 570–573.

  42. Walker, P. M. B., Richards, B. M.: A method of investigating the stoichiometry of Feulgen stain. Exp. Cell Res. 4 (Suppl.), 97–102 (1957).

  43. Wickbom, T.: Further cytological studies on Anura and Urodela. Hereditas (Lund) 35, 33–48 (1949).

  44. Wolff, S.: Chromosome aberrations and the cell cycle. Radiat. Res. 33, 609–619 (1968).

  45. Yates, F.: The use of transformations and maximum liklihood in the analysis of quantal experiments involving two treatments. Biometrika 42, 382–403 (1955).

  46. Ziemann, C.: Inwieweit lassen sich die ontogenetisch und phylogenetisch bedingten Kern -und Zellgrößenunterschiede bei Amphibien einheitlich deuten? Wissen schaftliche Z. Univ. Halle, Math.-naturw. Reihe 8, 799–822 (1959).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Griffin, C.S., Scott, D. & Papworth, D.G. The influence of DNA content and nuclear volume on the frequency of radiation-induced chromosome aberrations in Bufo species. Chromosoma 30, 228–249 (1970). https://doi.org/10.1007/BF00282003

Download citation

Keywords

  • Radiation Dose
  • Chromosome Number
  • Average Distance
  • Chromosome Region
  • Blood Lymphocyte