Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Saint-Venant's problem and semi-inverse solutions in nonlinear elasticity

Abstract

Saint-Venant's problem consists in finding elastic deformations of an infinite prismatic body taking given values for the cross-sectional resultants of force and moment. Using the center manifold approach we show that all deformations having sufficiently small bounded strains lie on a finite-dimensional manifold. In particular, the flow on this manifold is described by a set of equations having exactly the form of the classical rod equations. Moreover, the set of semi-inverse solutions can be analyzed locally.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. Amann: Parabolic Evolution Equations with Nonlinear Boundary Conditions, Proceedings of Symposia in Pure Mathematics 45, 17–27 (1986), pt. 1.

  2. 2.

    S. S. Antman: Ordinary Differential Equations of Nonlinear Elasticity I, Arch. Rational Mech. Anal. 61, 306–351 (1976).

  3. 3.

    S. S. Antman: Large Lateral Buckling of Nonlinearly Elastic Beams, Arch. Rational Mech. and Anal. 84, 293–305 (1984).

  4. 4.

    J. M. Ball: Constitutive Inequalities and Existence Theorems in Nonlinear Elastostatics, in “Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. I”, R. J. knops ed., Pitman London 1977, 187–241.

  5. 5.

    P. G. Ciarlet: “Mathematical Elasticity Vol. I” North-Holland, Amsterdam 1987.

  6. 6.

    J. L. Ericksen: On the Formulation of Saint-Venant's Problem, in “Nonlinear Analysis and Mechanics: Heriot-Watt Symposium Vol. I”, R. J. knops ed., Pitman London 1977, 158–186.

  7. 7.

    J. L. Ericksen: Problems for Infinite Elastic Prisms — St.-Venant's Problem for Elastic Prisms, in “Systems of Nonlinear Partial Differential Equations”, J. M. Ball ed., NATO ASI Series C 111, Reidel Publ. Comp. 1983.

  8. 8.

    P. J. Holmes & A. Mielke: Complex Equilibria of Buckled Rods, Arch. Rational Mech. Anal. 101, 319–348 (1988).

  9. 9.

    T. J. R. Hughes & J. E. Marsden: Topics in the Mathematical Foundations of Elasticity, in “Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. II.” R. J. Knops ed., Pitman London 1978, 30–285.

  10. 10.

    D. Kinderlehrer: Remarks about Saint-Venant's Solutions in Finite Elasticity, Proceedings of Symposia in Pure Mathematics 45, 37–50 (1986), pt. 2.

  11. 11.

    J. L. Lions & E. Magenes: “Problèmes aux limites non homogènes et applications, Vol. 1”, Dunod Paris 1968.

  12. 12.

    A. Mielke: Reduction of Quasilinear Elliptic Equations in Cylindrical Domains with Applications, Math. Meth. Appl. Sciences 10, 51–67 (1988).

  13. 13.

    A. Mielke: On Saint-Venant's Problem for an Elastic Strip, Proc. Roy. Soc. Edinburgh, to appear.

  14. 14.

    R. G. Muncaster: Saint-Venant's Problem in Nonlinear Elasticity: A Study of Cross-Sections, in “Nonlinear Analysis and Mechanics: Heriot-Watt Symp. Vol. IV”, R. J. knops ed., Pitman London 1979, 17–75.

  15. 15.

    R. G. Muncaster: Saint-Venant's Problem for Slender Prisms, Utilitas mathematica 23, 75–101 (1983).

  16. 16.

    J. Nečas: “Les Méthodes Directes en Théorie des Equations Elliptiques,” Masson, Paris 1967.

  17. 17.

    O. A. Oleinik & G. A. Yosifian: On the Asymptotic Behavior at Infinity of Solutions in Linear Elasticity, Arch. Rational Mech. Anal. 78, 29–53 (1983).

Download references

Author information

Additional information

Communicated by J. M. Ball

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mielke, A. Saint-Venant's problem and semi-inverse solutions in nonlinear elasticity. Arch. Rational Mech. Anal. 102, 205–229 (1988). https://doi.org/10.1007/BF00281347

Download citation

Keywords

  • Neural Network
  • Manifold
  • Complex System
  • Nonlinear Dynamics
  • Elastic Deformation