Archive for Rational Mechanics and Analysis

, Volume 16, Issue 2, pp 89–96 | Cite as

A mimmax theory for overdamped systems

  • E. H. Rogers


Neural Network Complex System Nonlinear Dynamics Electromagnetism Overdamped System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Rayleigh, Lord., Some general theorems relating to vibrations. I. The stationary condition. II. The dissipation function. III. A law of reciprocal character. Proc. London Math. Soc. 4, 357–368 (1873); Scientific Papers 1, 170–184.MathSciNetGoogle Scholar
  2. [2]
    Poincaré, H., Sur les équations aux dérivées partielles de la physique mathématique. Amer. J. Math. 12, 211–294 (1890).MathSciNetCrossRefGoogle Scholar
  3. [3]
    Fischer, E., Über quadratische Formen mit reellen Koeffizienten. Monatshefte für Math. und Physik 16, 234–249 (1905).MathSciNetCrossRefGoogle Scholar
  4. [4]
    Weyl, H., Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Annalen 71, 441–479 (1912).MathSciNetCrossRefGoogle Scholar
  5. [5]
    Courant, R., & D. Hilbert, Methods of Mathematical Physics I. New York 1953.Google Scholar
  6. [6]
    Duffin, R. J., A minimax theory for overdamped networks. J. of Rational Mech. Anal. 4, 221–233 (1955).MathSciNetzbMATHGoogle Scholar
  7. [7]
    Duffin, R. J., The Rayleigh-Ritz method for dissipative or gyroscopic systems. Quarterly App. Math. 18, 215–221 (1960).MathSciNetCrossRefGoogle Scholar
  8. [8]
    Morse, M., Functional analysis and abstract variational theory. Mém. des Sci. Math. XCII (1938).Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • E. H. Rogers
    • 1
  1. 1.Carnegie Institute of TechnologyPittsburgh

Personalised recommendations