Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lower bounds for all eigenvalues by cell functions: A refined form of H. F. Weinberger's method

  • 42 Accesses

  • 11 Citations

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Collatz, L.: Konvergenz des Differenzverfahrens bei Eigenwertproblemen partieller Differentialgleichungen. Dtsch. Math. 3, 200–212 (1938).

  2. [2]

    Courant, R.: Variational methods for the solutions of problems of equilibrium and vibrations. Bull. Amer. Math. Soc. 49, 1–23 (1943).

  3. [3]

    Forsythe, G. E.: Asymptotic lower bounds for the frequencies of certain polygonal membranes. Pacific J. Math. 4, 467–480 (1954).

  4. [4]

    Forsythe, G. E.: Asymptotic lower bounds for the fundamental frequency of convex membranes. Pacific J. Math. 5, 691–702 (1955).

  5. [5]

    Hersch, J.: Equations différentielles et fonctions de cellules. C. R. Acad. Sci. Paris 240, 1602–1604 (1955).

  6. [6]

    Hubbard, B.: Bounds for eigenvalues of the free and fixed membrane by finite difference methods. Pacific J. Math. 11, 559–590 (1961).

  7. [7]

    Hubbard, B.: Eigenvalues of the non-homogeneous rectangular membrane by finite difference methods. Arch. Rational Mech. Anal, 9, 121–133 (1962).

  8. [8]

    Pólya, G.: Sur une interprétation de la méthode des différences finies qui peut fournir des bornes supérieures ou inférieures. C. R. Acad. Sci. Paris 235, 995–997 (1952).

  9. [9]

    Weinberger, H. F.: Lower bounds for minima by finite difference methods. Bull. Amer. Math. Soc. 61, 301 (1955).

  10. [10]

    Weinberger, H. F.: Upper and lower bounds for eigenvalues by finite difference methods. Comm. Pure Appl. Math. 9, 613–623 (1956).

  11. [11]

    Weinberger, H. F.: Lower bounds for higher eigenvalues by finite difference methods. Pacific J. Math. 8, 339–368 (1958).

Download references

Author information

Additional information

This investigation was performed partly at the University of California in Berkeley and supported there by the U. S. Air Force Office of Scientific Research under Contract No. AF 49(638)-253 and partly at the Battelle Memorial Institute, Geneva, Switzerland.

Communicated by M. M. Schiffer

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hersch, J. Lower bounds for all eigenvalues by cell functions: A refined form of H. F. Weinberger's method. Arch. Rational Mech. Anal. 12, 361–366 (1963). https://doi.org/10.1007/BF00281233

Download citation