Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Initial-boundary value problems for linear hyperbolic partial differential equations of the second order

  • 201 Accesses

  • 34 Citations

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Duff, G. F. D.: Harmonic p-tensors on normal hyperbolic Riemannian spaces. Can. J. Math. 5, 57–80 (1953).

  2. [2]

    Duff, G. F. D.: Partial Differential Equations. Toronto: Univ. of Toronto Press 1956.

  3. [3]

    Duff, G. F. D.: A mixed problem for normal hyperbolic linear partial differential equations of second order. Can. J. Math. 9, 141–160 (1957).

  4. [4]

    Duff, G. F. D.: Hyperbolic mixed problems for harmonic tensors. Can. J. Math. 9, 161–179 (1957).

  5. [5]

    Duff, G. F. D.: Mixed problems for linear systems of first order equations. Can. J. Math. 10, 127–160 (1957).

  6. [6]

    Duff, G. F. D.: Mixed problems for hyperbolic equations of general order. Can. J. Math. 11, 195–221 (1959).

  7. [7]

    Friedrichs, K. O.: Spektraltheorie halbbeschränkter Operatoren. Math. Ann. 109, 465–487, 685-713 (1934); 110, 777–779 (1935).

  8. [8]

    Friedrichs, K. O.: On differential operators in Hilbert spaces. American J. Math. 61, 523–544 (1939).

  9. [9]

    Friedrichs, K. O.: The identity of weak and strong extensions of differential operators. Trans. A. M. S. 55, 132–151 (1944).

  10. [10]

    Friedrichs, K. O.: On the differentiability of the solutions of linear elliptic differential operators. Comm. Pure Appl. Math. 6, 299–326 (1953).

  11. [11]

    Garnir, H.: Théorie des Espaces Fonctionnels Hilbertiens et ses Applications aux Problèmes aux Limites de la Physique Mathématique. Basle: Birkhauser 1958.

  12. [2]

    Hille, E., & R. S. Phillips: Functional Analysis and Semi-Groups. Amer. Math. Soc. Colloquium Publications, Vol. XXXI (1957).

  13. [3]

    Krzyzanski, M., & J. Schauder: Quasilineare Differentialgleichungen zweiter Ordnung vom hyperbolischen Typus: Gemischte Randwertaufgaben. Studia Math. 6, 162–189 (1936).

  14. [14]

    Ladyzhenskaya, O. A.: On non-stationary operator equations and their application to linear problems of mathematical physics. Mat. Sbornik 45, 123–158. (1958) [in Russian]

  15. [15]

    Lions, J. L.: Equations Différentielles Opérationnelles et Problèmes aux Limites. Berlin-Göttingen-Heidelberg: Springer 1961.

  16. [16]

    Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, Ser. III 13, 1–48 (1959).

  17. [17]

    Phillips, R. S.: Dissipative hyperbolic systems. Trans. A. M. S. 86, 109–173 (1957).

  18. [18]

    Phillips, R. S.: Dissipative operators and hyperbolic systems of partial differential equations. Trans. A. M. S. 90, 193–254 (1959).

  19. [19]

    Riesz, F., & B. Sz.-Nagy: Functional Analysis. New York: F. Ungar 1955.

  20. [20]

    Schauder, J.: Gemischte Randwertaufgaben bei partiellen Differentialgleichungen vom hyperbolischen Typus. Studia Math. 6, 190–198 (1936).

  21. [21]

    Vishik, M., & O. A. Ladyzhenskaya: Boundary value problems for partial differential equations and certain classes of operator equations. Uspehi Mat. Nauk (N.S.) 11, 41–97 (1956) [Russian] A. M. S. Translation, series II 10, 223–281 (1958).

Download references

Author information

Additional information

This research was sponsored by the Mathematics Research Center, U. S. Army, Madison, Wisconsin under Contract No. DA-11-022-ORD-2059.

Communicated by A. Erdélyi

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilcox, C.H. Initial-boundary value problems for linear hyperbolic partial differential equations of the second order. Arch. Rational Mech. Anal. 10, 361–400 (1962). https://doi.org/10.1007/BF00281202

Download citation

Keywords

  • Differential Equation
  • Neural Network
  • Complex System
  • Partial Differential Equation
  • Nonlinear Dynamics