Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A protocol for determining lake acidification pathways

Abstract

The chemistry of 282 sampled low pH (<6.0) lakes in the U.S. E.P.A. Eastern Lake Survey (ELS) was evaluated in an attempt to assess why these systems have low pH. Evaluations were made using a decision protocol for classifying lakes according to several hypothesized acidifying mechanisms: acidic deposition, presence of wetlands and organic soils, acid mine drainage, watershed S sources, salt driven acidification, and changes in land use. The algorithm evaluates lakes in three steps: (1) initial exclusion criteria exclude from consideration lakes with pH greater than 6.0 or subject to strong confounding influences (e.g., road salt); (2) a general classification discriminates between lakes according to anion dominance; and (3) a secondary classification of lakes within each anion dominant class determines the most likely acidification pathway, using preliminary quantitative criteria designed to discriminate among competing hypotheses. Results computed for sampled lakes were scaled-up to produce regional population estimates, using the statistical framework of the ELS. Acidic deposition appears to be the most likely cause of low pH conditions in about two-thirds of the non-excluded lakes in the ELS low pH target population. Organic acidity arising from wetlands or land use changes appears to be primarily responsible for the low pH status of one quarter of these lakes. Watershed S sources and acid mine drainage appear to be of negligible importance, though further information on dry deposition rates and/or watershed soils is required to confirm this.

This is a preview of subscription content, log in to check access.

References

  1. Albritton, D., Fehsenfeld, F., Hicks, B., Miller, J., Liu, S., Hales, J., Shannon, J., Durham, J., and Patrinos, A.: 1986, Chapter 4. ‘Atmospheric Processes’, in Interim Assessment: The Causes and Effects of Acidic Deposition, Volume III. National Acid Precipitation Assessment Program, Washington. 81 p.

  2. Baker, L. A., Pollman, C. D., and Eilers, J. M.: 1988, Water Resour. Res. 24, 1069.

  3. Berden, M., Nilsson, S. I., Rosen, K., and Tyler, G.: 1987, ‘Soil Acidification: Extent, Causes, and Consequences’, National Swedish Environment Protection Board, Solna. Report 3292, 164 pp.

  4. Brakke, D. F., Henriksen, A. and Norton, S. A.: 1987, Nature 329, 432.

  5. Brakke, D. F., Landers, D. H., and Eilers, J. M.: 1988, Environ Sci. Technol. 22, 155.

  6. Church, M. R. and Turner, R. S. (eds.): 1986, ‘Factors Affecting the Long-term Response of Surface Waters to Acidic Precipitation: State-of-the-Science’. U.S. Environmental Protection Agency, Corvallis.

  7. Cook, R. B., Kelly, C. A., Schindler, D. W., and Turner, M. A.: 1986, Limnol. Oceanogr. 31, 134.

  8. Davis, R. B., Anderson, D. S., and Berge, F.: 1985, Nature 316, 436.

  9. Dickson, W.: 1986, in I. Nilsson (ed.), Critical Loads for Sulfur and Nitrogen, Nordic Council of Ministers, Stockholm, pp. 143–158.

  10. Dugan, P. R.: 1972, Biochemical Ecology of Water Pollution. Plenum, New York, 159 pp.

  11. Dyer, K. L.: 1986, in Proceedings of the National Meeting of the American Society for Surface Mining and Reclamation, Jackson, Mississippi. Amer. Soc. Surface Mining and Reclamation, Princeton, WV, pp. 131–139.

  12. Eilers, J. M., Brakke, D. F., and Landers, D. H.: 1988a, Environ. Sci. Technol 22, 164.

  13. Eilers, J. M., Landers, D. H., and Brakke, D. F.: 1988b, Environ. Sci. Technol. 22, 172.

  14. EPA. 1985, Direct/Delayed Response Project. Long Term Response of Surface Waters to Acidic Deposition: Factors Affecting Response and a Plan for Classifying Response Characteristics on Regional Scales. Part A — State-of-Science; Part B — Implementation Plan. U.S. Environmental Protection Agency, Corvallis.

  15. Eshleman, K. N. and Hemond, H. F.: 1985, Water Resources Res. 21, 1503.

  16. Fernald, E. A. and Patton, D. G. (eds.): 1984, Water Resources Atlas of Florida, Florida State University, Tallahassee.

  17. Geraghty, J. J., Miller, D. W., van der Leeden, F., and Troise, F. L.: 1973, Water Atlas of the United States, Water Information Center, Port Washington.

  18. Gorham, E., Bayley, S. E., and Schindler, D. W.: 1984, Can. J. Fish. Aquat. Sci. 41, 1256.

  19. Gorham, E., Underwood, J. K., Martin, F. B., and Ogden III, J. G.: 1986, Nature 324, 451.

  20. Haines, T. A.: 1981, Trans. Amer. Fish. Soc. 110, 669.

  21. Hendry, C. D. and Brezonik, P. L.: 1984, Water Resour. Bull. 20, 75.

  22. Henriksen, A.: 1980, in D. Drablos and A. Tollan (eds.), SNSF Project, Oslo, 68–74.

  23. Huckabee, J. W., Goodyear, C., and Jones, R. D.: 1975, Trans. Amer. Fish. Soc. 4, 677.

  24. Jones, M. L., Marmorek, D. R., Reuber, B. S., McNamee, P. J., and Rattie, L. P.: 1986, ‘Brown Waters: Relative Importance of External and Internal Sources of Acidification on Catchment Biota: Review of Existing Knowledge‘, Final report for Environment Canada, Department of Fisheries and Oceans, 85 pp.

  25. Kanciruk, P., Eilers, J. M., McCord, R. A., Landers, D. H., Brakke, D. F., and Linthurst, R. A.: 1986, Characteristics of Lakes in the Eastern United States, Volume III: Data Compendium of Site Characteristics and Chemical Variables, EPA-600/4-86-007c.

  26. Kerekes, J., Beauchamp, S., Tordon, R., and Pollock, T.: 1986, Water, Air, and Soil Pollut. 31, 207.

  27. Krug, E. C. and Frink, C. R.: 1983, Science 221, 520.

  28. LaZerte, B. D. and Dillon, P. J.: 1984, Can. J. Fish Aquat. Sci. 41, 1664.

  29. Linthurst, R. A., Landers, D. H., Eilers, J. M., Brakke, D. F., Overton, W. S., Meier, E. P., and Crowe, R. E.: 1986, Characteristics of Lakes in the Eastern United States. Vol. I: Population descriptions and physio-chemical relationships, EPA-600/4-86-007a.

  30. Leland, W.: 1986, SYSTAT: The System for Statistics, Systat Inc., Evanston, IL.

  31. Likens, G. E., Bormann, F. H., Johnson, N. M., Fisher, D. W., and Pierce, R.S.: 1970, Ecol. Monogr. 40, 23.

  32. Marmorek, D. R., Bernard, D. P., Jones, M. L., and Rattie, L. P.: 1987, ‘The Effects of Mineral Acid Deposition on Concentrations of Dissolved Organic Acids in Surface Waters’, Draft report prepared for Northrup Services Inc. and U.S. Environmental Protection Agency, 87 pp.

  33. Norton, S. A., Henriksen, A., Wright, R. F., and Brakke, D. F.: 1987, in B. Moldau and T. Paces (eds.), Geological Survey, Prague, pp. 148–150.

  34. Oliver, B. G., Thurman, E. M., and Malcolm, R. L.: 1983, Geochim. Cosmochim. Acta 47, 2031.

  35. Perdue, E. M., Beck, K. C., and Reuter, J. H.: 1976, Nature 260, 118.

  36. Rosenqvist, I. T.: 1978, Sci. Total Environ. 10, 39.

  37. Schindler, D. W., Niells, K. H., Malley, D. F., Findlay, D. L., Shearer, J. A., Davies, I. J., Turner, M. A., Linsey, G. A., and Cruikshank, D. R.: 1985, Science 228, 1395.

  38. Seip, H. M.: 1980, in D. Drablos and A. Tollon (eds.), SNSF Project, Oslo, pp. 358—366.

  39. Stumm, W. and Morgan, J. J.: 1970, Aquatic Chemistry, Wiley Interscience, New York.

  40. Sullivan, T. J., Driscoll, C. T., Eilers, J. M. and Landers, D. H.: 1988a, Environ. Sci. Technol. 22, 185.

  41. Sullivan, T. J., Filers, J. M., Church, M. R., Blick, D. J., Eshleman, K. N., Landers, D. H., and DeHaan, M. S.: 1988b, Nature 331, 607.

  42. Thompson, M. E.: 1982, Water, Air, and Soil Pollut. 18, 215.

  43. Wiklander, L.: 1975, Geoderma 14, 93.

  44. Wright, R. F., Conroy, N., Dickson, W. T., Harriman, R., Henriksen, A., and Schofield, G. H.: 1980, in D. Drablos and A. Tollan (eds.), SNSF Project, Oslo, 377–379.

Download references

Author information

Additional information

Author for all correspondence

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marmorek, D.R., Bernard, D.P., Wedeles, C.H.R. et al. A protocol for determining lake acidification pathways. Water Air Soil Pollut 44, 235–257 (1989). https://doi.org/10.1007/BF00279257

Download citation

Keywords

  • Acid Mine Drainage
  • Acidic Deposition
  • Acidification Pathway
  • Confounding Influence
  • Dominant Class