Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

emb-5, a gene required for the correct timing of gut precursor cell division during gastrulation in Caenorhabditis elegans, encodes a protein similar to the yeast nuclear protein SPT6

  • 63 Accesses

  • 37 Citations

Abstract

The emb-5 gene is required for the correct timing of division of gut precursor cells during gastrulation in Caenorhabditis elegans. We have now characterized the molecular structure of emb-5. The predicted emb-5-encoded protein (EMB-5) possesses an extremely acidic amino-terminus and overall similarity to the Saccharomyces cerevisiae nuclear protein SPT6, which has been shown to affect the transcription of a variety of genes and suggested to play a role in chromatin assembly or modification. EMB-5 may function in the control of cell cycle timing by modulating chromatin structure and consequently affects morphogenesis of C. elegans.

This is a preview of subscription content, log in to check access.

References

  1. Austin J, Kimble J (1989) Transcript analysis of glp-1 and lin-12, homologous genes required for cell interactions during development of C. elegans. Cell 58:565–571

  2. Babu P (1974) Biochemical genetics of Caenorhabditis elegans. Mol Gen Genet 135:39–44

  3. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

  4. Campos-Ortega J, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer Verlag, Berlin Heidelberg, pp 173–180

  5. Cassada R, Isnenghi E, Culotti M, von Ehrenstein G (1981) Genetic analysis of temperature-sensitive embryogenesis mutants in Caenorhabditis elegans. Dev Biol 84:193–205

  6. Clark-Adams CD, Winston F (1987) The SPT6 gene is essential for growth and is required for δ-mediated transcription in Saccharomyces cerevisiae. Mol Cell Biol 7:679–686

  7. Clark-Adams CD, Norris D, Osley MA, Fassler JS, Winston F (1988) Changes in histone gene dosage alter transcription in yeast. Genes Dev 2:150–159

  8. Collins J, Saari B, Anderson P (1987) Activation of a transposable element in germ line but not in the soma of C. elegans. Nature 328:726–728

  9. Corden J, Wasylyk B, Buchwalder A, Sassone-Corsi P, Kedinger C, Chambon P (1980) Promoter sequences of eukaryotic protein-coding genes. Science 209:1406–1414

  10. Coulson A, Sulston J, Brenner S, Karn J (1986) Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 83:7821–7825

  11. Denich KTR, Schierenberg E, Isnenghi E, Cassada R (1984) Cell-lineage and developmental defects of temperature-sensitive embryonic arrest mutants of the nematode Caenorhabditis elegans. Roux's Arch Dev Biol 193:164–179

  12. Denis CL (1984) Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II. Genetics 108:833–844

  13. Denis CL, Malvar T (1990) The CCR4 gene from Saccharomyces cerevisiae is required for both nonfermentive and spt-mediated gene expression. Genetics 124:283–291

  14. Deppe U, Schierenberg E, Cole T, Krieg C, Schmitt D, Yoder B, von Ehrenstein G (1978) Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 75:376–380

  15. Earnshaw WC (1987) Anionic regions in nuclear proteins. J Cell Biol 105:1479–1482

  16. Emmons SW (1988) The genome. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 47–79

  17. Emmons SW, Yesner L, Ruan K, Katzenberg D (1983) Evidence for a transposon in Caenorhabditis elegans. Cell 32:55–65

  18. Emmons SW, Klass MR, Hirsh D (1979) Analysis of the constancy of DNA sequence during development and evolution of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 76:1333–1337

  19. Fassler JS, Winston F (1988) Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics 118:203–212

  20. Fire A (1986) Integrative transformation of Caenorhabditis elegans. EMBO J 5:2673–2681

  21. Fitzgerald M, Shenk T (1981) The sequence 5′-AAUAAA-3′ forms part of the recognition site for polydenylation of late SV40 mRNAs. Cell 24:251–260

  22. Ghiara JB, Richardson HE, Sugimoto K, Henze M, Lew DJ, Wittenberg C, Reed SI (1991) A cyclin B homolog in S. cerevisiae: chronic activation of Cdc28 protein kinase by cyclin prevents exit from mitosis. Cell 65:163–174

  23. Hirsh D, Oppenheim D, Klass M (1976) Development of the reproductive system of Caenorhabditis elegans. Dev Biol 49:200–219

  24. Hubbard SC, Ivatt RJ (1981) Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem 50:555–583

  25. Isnenghi E, Cassada R, Smith K, Denich K, Radina K, von Ehrenstein G (1983) Maternal effect and temperature-sensitive period of mutants affecting embryogenesis in Caenorhabditis elegans. Dev Biol 98:465–480

  26. Karn J, Brenner S, Barnett L (1983) New bacteriophage lambda vectors with positive selection for cloned inserts. Methods Enzymol 100:3–19

  27. Kim SK, Horvitz HR (1990) The Caenorhabditis elegans gene fin-10 is broadly expressed while required specifically for the determination of vulval cell fates. Genes Dev 4:357–371

  28. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

  29. Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10:3959–3970

  30. Meyer BJ, Carson LP (1986) Caenorhabditis elegans compensate for the difference in X chromosome dosage between the sexes by regulating transcript levels. Cell 47:871–881

  31. Miwa J, Schrierenberg E, Miwa S, von Ehrenstein G (1980) Genetics and mode of expression of temperature-sensitive mutations arresting embryonic development in Caenorhabditis elegans. Dev Biol 76:160–174

  32. Neigeborn L, Rubin K, Carlson M (1986) Suppressors of snf2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast. Genetics 112:741–753

  33. Neigeborn L, Celenza JL, Carlson M (1987) SSN20 is an essential gene with mutant alleles that suppress defects in SUC2 transcription in Saccharomyces cerevisiae. Mol Cell Biol 7:672–678

  34. Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503–508

  35. Pines J, Hunter T (1989) Isolation of a human cyclin cDNA: Evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58:833–846

  36. Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: Identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623

  37. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

  38. Schierenberg E, Miwa J, von Ehrenstein G (1980) Cell lineage and developmental defects of temperature-sensitive embryonic arrest mutants in Caenorhabditis elegans. Dev Biol 76:141–159

  39. Staden R (1982) An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Res 10:2951–2961

  40. Stinchcomb DT, Shaw JE, Carr SH, Hirsh D (1985) Extrachromosomal DNA Transformation of Caenorhabditis elegans. Mol Cell Biol 5:3484–3496

  41. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

  42. Surana U, Robitsch H, Price C, Schuster T, Fitch I, Futcher AB, Nasmyth K (1991) The role of CDC28 and cyclins during mitosis in budding yeast S. cerevisiae. Cell 65:145–161

  43. Swanson MS, Carlson M, Winston F (1990) SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus. Mol Cell Biol 10:4935–4941

  44. Vieira J, Wessing J (1987) Production of single-stranded plasmid DNA. Meth Enzymol 153:3–11

  45. Winston F, Chaleff DT, Valent B, Fink GR (1984) Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107:179–197

  46. Winston F, Dollard C, Malone EA, Clare J, Kapakos JG, Farabaugh P, Minehart PL (1987) Three genes are required for trans-activation of Ty transcription in yeast. Genetics 115:649–654

  47. Wood WB, Hecht R, Carr S, Vanderslice R, Wolf N, Hirsh D (1980) Parental effects and phenotypic characterization of mutations that affect early development of Caenorhabditis elegans. Dev Biol 74:446–469

Download references

Author information

Correspondence to Johji Miwa.

Additional information

Communicated by K. Isono

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nishiwaki, K., Sano, T. & Miwa, J. emb-5, a gene required for the correct timing of gut precursor cell division during gastrulation in Caenorhabditis elegans, encodes a protein similar to the yeast nuclear protein SPT6. Molec. Gen. Genet. 239, 313–322 (1993). https://doi.org/10.1007/BF00276929

Download citation

Key words

  • emb-5
  • Caenorhabditis elegans
  • Cell cycle
  • Gastrulation
  • SPT6