Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A model of the role of natural killer cells in immune surveillance — I

  • 108 Accesses

  • 16 Citations

Summary

The theory of immune surveillance of Thomas and Burnet stated in part that antigenic differences between neoplastic and normal cells provide the stimulus for their destruction by cells of the immune system. Burnet pointed to the T lymphocyte as the cell which mediated this surveillance. The existence of some form of surveillance in cases of no T lymphocyte functioning presents the possibility that surveillance, if present at all, is mediated by non T cells.

Cells identified as naturally cytotoxic killer (NK) cells appear to have properties required of a surveillance effector population. This paper utilizes properties of NK cells and the effects of interferon on this population to construct a mathematical model of the characteristics that an NK cell surveillance would have. A two level theory of immune surveillance is proposed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Albert, A., Freedman, M., Perelson, A.: Tumors and the immune system: The effects of a tumor growth modulator. Math. Biosci. 50, 25–58 (1980)

  2. 2.

    Burnet, F. M.: Cancer—a biological approach. Br. Med. J. 1, 779–786 and 841–847 (1957)

  3. 3.

    Burnet, F. M.: The concept of immune surveillance. Prog. Exp. Tumor Res. 13, 1–23 (1970)

  4. 4.

    Burnet, F. M.: Immunological surveillance in neoplasia. Trans. Rev. 7, 3–25 (1971)

  5. 5.

    Cronin, Jane: Differential equations, introduction and qualitative theory. Marcel Dekker, 1980

  6. 6.

    Cudkowicz, G., Hochman, P. S.: Do natural killer cells engage in regulated reaction against self to ensure homeostasis? Immunol. Rev. 44, 13–41 (1979)

  7. 7.

    DeLisi, C, Rescigno, A.: Immune surveillance and neoplasia, I. A minimal mathematical model. Bull. Math. Biol. 39, 201–221 (1977)

  8. 8.

    DeMaeyer, E., DeMaeyer-Guignard, J.: Interferons. In: Comprehensive virology, Vol. 15 (H. Fraenkel-Conrat, R. R. Wagner, eds.), pp. 205–284. Plenum 1979

  9. 9.

    Eisen, M.: Mathematical models in cell biology and cancer chemotherapy. Springer-Verlag 1979

  10. 10.

    Garay, R. P., Lefever, R.: A kinetic approach to the immunology of cancer: Stationary states properties of effector-target cell reactions. J. Theor. Biol. 73, 417–438 (1978)

  11. 11.

    Grossman, Z., Berke, G.: Tumor escape from immune elimination. J. Theor. Biol. 83, 267–296 (1980)

  12. 12.

    Hale, J. K.: Ordinary differential equations. Wiley-Interscience 1969

  13. 13.

    Hellström, K. E., Hellström, I.: Lymphocyte mediated cytoxicity and blocking serum activity to tumor antigens. Adv. Immunol. 18, 209–277 (1974)

  14. 14.

    Herberman, R. B., Nunn, M. E., Lavrin, D. H., Asofsky, R.: Effect of antibody to θ antigen on cell-mediated immunity induced in syngeneic mice by murine sarcoma virus. J. Natl. Cancer Inst. 51, 1509–1512 (1973)

  15. 15.

    Herberman, R. B., Holden, H. T.: Natural cell-mediated immunity. Adv. Cancer Res. 27, 305–377 (1978)

  16. 16.

    Herberman, R. B., Djeu, J. Y., Kay, H. D., Ortaldo, J. R., Riccardi, C., Bonnard, G. D., Holden, H. T., Fagnani, R., Santoni, A., Puccetti, P.: Natural killer cells: Characteristics and regulation of activity. Immunol. Rev. 44, 43–70 (1979)

  17. 17.

    Kiessling, R., Hochman, P. S., Haller, O., Wigzell, H., Cudkowicz, G.: Evidence for a similar or common mechanism for natural killer cell activity and the resistance to hemopoietic grafts. Eur. J. Immunol. 7, 655–663 (1977)

  18. 18.

    Kiessling, R., Wigzell, H.: An analysis of the murine NK cell as to structure, function and biological relevance. Immunol. Rev. 44, 165–208 (1979)

  19. 19.

    Klein, G., Klein, E.: Immune surveillance against virus-induced tumors and nonrejectability of spontaneous tumors: Contrasting consequences of host versus tumor evolution. Proc. Nat. Acad. Sci. USA 74, 2121–2125 (1977)

  20. 20.

    Koo, G. C., Jacobsen, J. B., Hammerling, G. J., Hammerling, U.: Antigenic profile of murine natural killer cells. J. Immunol. 125, 1003–1006 (1980)

  21. 21.

    Lefever, R., Garay, R. P.: A mathematical model of the immune surveillance against cancer. In: Theoretical immunology (G. I. Bell, A. S. Perelson, G. H. Pimbley, Jr., eds.), pp. 481–518. Marcel Dekker 1978

  22. 22.

    Lefever, R., Garay, R. P.: Local description of immune tumor rejection. In: Biomathematics and cell kinetics (A. J. Valleron, P. D. M. Macdonald, eds.), pp. 333–344. Elsevier/North-Holland 1978

  23. 23.

    Lohmann-Matthes, M. L., Roder, J.: Promonocytes have the functional characteristics of natural killer cells. J. Immunol. 123, 1883–1886 (1979)

  24. 24.

    Merrill, S. J.: A mathematical model of tumor growth and cytotoxic blocking activity. Math. Biosci. 47, 79–89 (1979)

  25. 25.

    Naor, D.: Suppressor cells: Permitters and promoters of malignancy. Adv. Immunol. 29, 45–125 (1979)

  26. 26.

    Oldham, R. K., Siwarski, D., McCoy, J. L., Plata, E. J., Herberman, R. B.: Evaluation of a cell-mediated cytotoxicity assay utilizing 125Iododeoxyuridine-labeled tissue culture target cells. Natl. Cancer Inst. Monograph 37, 49–58 (1973)

  27. 27.

    Prehn, R. T.: Discussion. In: Immune surveillance (R. T. Smith, M. Landy, eds.), pp. 451–462. Academic Press 1970

  28. 28.

    Rescigno, A., DeLisi, C.: Immune surveillance and neoplasia, II. A two-stage mathematical model. Bull. Math. Biol. 39, 487–497 (1977)

  29. 29.

    Roder, J. C., Lohmann-Matthes, M. L., Domzig, W., Wigzell, H.: The beige mutation in the mouse, II. Selectivity of the natural (NK) cell defect. J. Immunol. 123, 2174–2181 (1979)

  30. 30.

    Rygaard, J., Poulsen, C. O.: The nude mouse versus the hypothesis of immunological surveillance. Trans. Rev. 28, 43–61 (1976)

  31. 31.

    Saksela, E., Timonen, T., Ranki, A., Häyre, P.: Morphological and functional characterization of isolated effector cells responsible for human natural killer activity to fetal fibroblasts and to cultural cell line targets. Immunol. Rev. 44, 71–123 (1979)

  32. 32.

    Santoli, D., Koprowski, H.: Mechanisms of activation of human natural killer cells against tumor and virus-infected cells. Immunol. Rev. 44, 125–163 (1979)

  33. 33.

    Swan, G. W.: Some current mathematical topics in cancer research. University Microfilms 1977

  34. 34.

    Thames, H. D.: Mathematical models of dose and cell cycle effects in multifraction radiotherapy. In: Modeling and differential equations in biology (T. A. Burton, ed.), pp. 51–105. Marcel Dekker 1980

  35. 35.

    Thomas, L.: Reactions to homologous tissue antigens and relation to hypersensitivity. In: Cellular and humoral aspects of the hypersensitive states (H. S. Lawrence, ed.), pp. 529–532. Hoeber 1959

  36. 36.

    Timonen, T., Saksela, E., Virtanen, L, Cantell, K.: Natural killer cells are responsible for the interferon production induced in human lymphocytes by tumor cell contact. Eur. J. Immunol. 10, 422–427 (1980)

  37. 37.

    Welsh, R. M., Karre, K., Hansson, M., Kunkel, L. A., Kiessling, R. W.: Interferon-mediated protection of normal and tumor target cells against lysis by mouse natural killer cells. J. Immunol. 126, 219–225 (1981)

Download references

Author information

Additional information

This research has been supported in part by the National Science Foundation under grant #NSF-Eng. 7904852

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Merrill, S.J. A model of the role of natural killer cells in immune surveillance — I. J. Math. Biology 12, 363–373 (1981). https://doi.org/10.1007/BF00276923

Download citation

Key words

  • NK cells
  • Immune surveillance