Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Excitability of Paramecium and the significance of negative surface charges

A model analysis

  • 46 Accesses

  • 16 Citations

Summary

On the basis of a model presented in a previous paper (Hook and Hildebrand, 1979) the influence of external cation concentrations [K+]0, [Ca2+]0 and of membrane voltage Vm (i.e. the actual potential difference between the two membrane faces) on the locomotor behavior of Paramecium is theoretically analyzed. In an extended model system we discuss the negative feedback of intraciliary calcium [Ca2+]i on the excitability of the ciliary membrane. While a fast blocking of Ca channels is mediated by increased [Ca2+]i and accounts for the short duration of action potentials, a slow [Ca2+ ]i-dependent “denaturation” of channel molecules is assumed to determine excitability changes of Paramecium on a long time scale.

It is emphasized that the duration of long-lasting ciliary reversal which reflects the excitability is not a direct function of the cation ratio Ju ≡ [K+]0/[Ca2+] 0 1/2 but rather of the membrane potential Vm.

Introduction of negative surface charges can well explain why for a series of different [K+]0, [Ca2+]0 but constant Ja value the excitability is unchanged despite corresponding shifts in measured membrane potentials.

This is a preview of subscription content, log in to check access.

References

  1. Barlow, C. A., Jr.: The electrical double layer. In: Physical chemistry, an advanced treatise. Vol. 9A, Electrochemistry (H. Eyring, D. Henderson, W. Jost, eds.), pp. 167–246. New York: Academic Press 1970

  2. Brehm, P., Eckert, R.: Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202, 1203–1206 (1978)

  3. Eckert, R.: Bioelectric control of ciliary activity. Science 176, 473–481 (1972)

  4. Gilbert, D. L., Ehrenstein, G.: Effect of divalent cations on potassium conductance of squid axons: determination of surface charge. Biophys. J. 9, 447–463 (1969)

  5. Grahame, D. C.: The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41, 441–501 (1947)

  6. Hildebrand, E.: Modell für die Steuerung der Cilienbewegung von Paramecium (Protozoa) durch Membranprozesse. Verh. Dtsch. Zool. Ges. 1976, 243 (1976)

  7. Hildebrand, E.: Ciliary reversal in Paramecium: Temperature dependence of K+-induced excitability decrease and of recovery. J. Comp. Physiol. 127, 39–44 (1978)

  8. Hildebrand, E.: Further evidences for a Ca2+-mediated coupling between excitation and inactivation (adaptation) in Paramecium. Acta Protozool. 18, 147–148 (1979)

  9. Hildebrand, E., Dryl, S.: Significance of Ca2+ and K+ ions for the excitation of the protozoan membrane. Bioelectrochem. Bioenerg. 3, 543–544 (1976)

  10. Hill, T. L.: Studies in irreversible thermodynamics. J. Theor. Biol. 10, 442–459 (1966)

  11. Hille, B., Woodhull, A. M., Shapiro, B. I.: Negative surface charge near sodium channel of nerve: divalent ions, monovalent ions, and pH. Phil. Trans. R. Soc. Lond. B. 270, 301–318 (1975)

  12. Hook, C., Hildebrand, E.: Excitation of Paramecium. A model analysis. J. Math. Biol. 8, 197–214 (1979)

  13. Jahn, T. L.: The mechanism of ciliary movement. II. Ion antagonism and ciliary reversal. J. Cell. Comp. Physiol. 60, 217–228 (1962)

  14. Machemer, H., Eckert, R.: Ciliary frequency and orientational responses to clamped voltage steps in Paramecium. J. Comp. Physiol. 104, 247–260 (1975)

  15. McLaughlin, S., Harary, H.: Phospholipid flip-flop and the distribution of surface charges in excitable membranes. Biophys. J. 14, 200–208 (1974)

  16. McLaughlin, S., Szabo, G., Eisenman, G.: Divalent ions and the surface potential of charged phospholipid membranes. J. Gen. Physiol. 58, 667–687 (1971)

  17. Muller, R. U., Finkelstein, A.: The effect of surface charge on the voltage-dependent conductance induced in thin lipid membranes by Monazomycin. J. Gen. Physiol. 60, 285–306 (1972)

  18. Naitoh, Y.: Ionic control of the reversal response of cilia in Paramecium caudatum. A calcium hypothesis. J. Gen. Physiol. 51, 85–103 (1968)

  19. Naitoh, Y., Eckert, R.: Electrical properties of Paramecium caudatum: All-or-none electrogenesis. Z. Vergl. Physiol. 61, 453–472 (1968)

  20. Naitoh, Y., Kaneko, H.: Reactivated triton-extracted models of Paramecium: Modification of ciliary movement by calcium ions. Science 176, 523–524 (1972)

  21. Naitoh, Y., Eckert, R., Friedman, K.: A regenerative calcium response in Paramecium. J. Exp. Biol. 56, 667–681 (1972)

  22. Satow, Y., Kung, C.: Voltage sensitive Ca channels and the transient inward current in Paramecium tetraurelia. J. Exp. Biol. 78, 149–161 (1979)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hook, C., Hildebrand, E. Excitability of Paramecium and the significance of negative surface charges. J. Math. Biology 9, 347–360 (1980). https://doi.org/10.1007/BF00276498

Download citation

Key words

  • Ciliary membrane
  • Ciliary reversal
  • Surface charge
  • Surface potential
  • Slow Ca2+ inactivation
  • Ca pump