Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Asymptotic properties of a continuous-space discrete-time population model in a random environment

  • 146 Accesses

  • 31 Citations

This is a preview of subscription content, log in to check access.

References

  1. Billingsley, P.: Convergence of probability measures. New York: Wiley 1968

  2. Chesson, P. L.: The stabilizing effect of a random environment. J. Math. Biol. 15, 1–36 (1982)

  3. Ellner, S.: Asymptotic behavior of some stochastic difference equation population models. J. Math. Biol. 19, 169–200 (1984)

  4. Furstenberg, H., Kifer, Y.: Random matrix products and measures on projective spaces. Isr. J. Math. 46, 12–32 (1983)

  5. Hardin, D., Takáč, P., Webb G. F.: A comparison of dispersal strategies for survival of spatially heterogeneous populations. To appear in SIAM J. Appl. Math.

  6. Kingman, J. F. C.: Subadditive ergodic theory. Ann. Probab. 1, 883–909 (1973)

  7. Kot, M., Schaffer, W. M.: Discrete-time growth-dispersal models. Math. Biosci. 80, 109–136 (1986)

  8. Levin, S. A., Cohen, D., Hastings, A.: Dispersal strategies in patchy environments. Theor. Popul. Biol. 26, 165–191 (1984)

  9. Watkinson, A. R.: Density dependence in single-species populations of plants. J. Theor. Biol. 82, 345–357 (1980)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hardin, D.P., Takáč, P. & Webb, G.F. Asymptotic properties of a continuous-space discrete-time population model in a random environment. J. Math. Biology 26, 361–374 (1988). https://doi.org/10.1007/BF00276367

Download citation

Keywords

  • Stochastic Process
  • Probability Theory
  • Mathematical Biology
  • Matrix Theory
  • Population Model