Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A general treatment of crack tip contour integrals

  • 722 Accesses

  • 283 Citations

Abstract

Given a general balance statement we derive an expression for the associated crack tip flux integral. The conditions under which the integral is physically meaningful and yields a non-trivial result are outlined. To illustrate the approach a number of well known integrals in use in fracture mechanics are derived. It is demonstrated that complementary analogues to these integrals can be derived in a similar fashion and a result indicating the equality of dual integrals under quite general conditions is presented. We discuss the domain integral method as an alternative means of representing crack tip integrals and we show that the method may be interpreted as a particular form of Signorini's theorem of stress means. A discussion of some associated integral identities is presented.

Résumé

Une expression pour l'intégrale de flux á l'extrémité d'une fissure est obtenue sur base d'un état général d'équilibre. On souligne les conditions pour lesquelles l'intégrale a un sens physique et ne mène pas á des résultats triviaux. L'approche adoptée est illustrée par 1'établissement d'une série d'intégrales bien connues, utilisées en mécanique de rupture. On démontre que l'on peut tirer d'une manière similaire des contreparties compl'ementaires à ces intégrales et on présente un résultat indiquant que les intégrales doubles ainsi établies sont égales dans des conditions très générales. On discute de la méthode d'intégration sur un domaine comme variante de représentation des intégrales à l'extrémité d'une fissure et on montre que cette méthode peut être interprêtée comme une forme particulière du théorème de Signorini des contraintes médianes. On présente enfin une discussion sur diverses formes d'intégrales associées.

This is a preview of subscription content, log in to check access.

References

  1. l.

    C. Atkinson and J.D. Eshelby, International Journal of Fracture Mechanics 4 (1968) 3–8.

  2. 2.

    B.V. Kostrov and L.V. Nikitin, Archiwum Mechanici Stosowanej 22 (1970) 749–775.

  3. 3.

    L.B. Freund, Journal of Elasticity 2 (1972) 341–349.

  4. 4.

    J.R. Willis, The Mechanics and Physics of Fracture, The Metal Society (1975) 57–67.

  5. 5.

    T. Nakamura, C.F. Shih and L.B. Freund, International Journal of Fracture 27 (1985) 229–243.

  6. 6.

    J.L. Bassani and F.A. McClintock, International Journal of Solids and Structures 17 (1981) 479–492.

  7. 7.

    H.D. Bui, Engineering Fracture Mechanics 6 (1974) 287–296.

  8. 8.

    T. Nakamura, C.F. Shih and L.B. Freund, to appear in ASTM STP.

  9. 9.

    J.K. Knowles and E. Sternberg, Archive for Rational Mechanics and Analysis 44 (1972) 187–211.

  10. 10.

    B. Budiansky and J.R. Rice, Journal of Applied Mechanics 40 (1973) 201–203.

  11. 11.

    D.M. Parks, Computer Methods in Applied Mechanics and Engineering 12 (1977) 353–364.

  12. 12.

    F.Z. Li, C.F. Shih and A. Needleman, Engineering Fracture Mechanics 21 (1985) 405–421.

  13. 13.

    C.F. Shih, B. Moran and T. Nakamura, International Journal of Fracture 30 (1986) 79–102.

  14. 14.

    J.D. Eshelby, in Inelastic Behavior of Solids, M.F. Kanninen et al. (eds.), McGraw-Hill, New York (1970) 77–114.

  15. 15.

    L.M. Kachanov, Mekhanika Tverdogo Tela 13 (1978) 97–102.

  16. 16.

    J. R. Rice, in Fracture: An Advanced Treatise, H. Liebowitz (ed.), Vol. 2, Academic Press (1968) 191–311.

  17. 17.

    J.R. Rice, Journal of Applied Mechanics 35 (1968) 379–386.

  18. 18.

    J.W. Hutchinson, Journal of Applied Mechanics 50 (1968) 1042–1051.

  19. 19.

    F. Nilsson, in Proceedings of the 3rd Conference on Mechanical Properties at High Rates of Strain, Institute of Physics (1984) 185–204.

  20. 20.

    J.R. Rice, in Proceedings of the 8th U.S. National Congress of Applied Mechanics, R.E. Kelly (ed.), Western Periodicals (1974) 191–216.

  21. 21.

    Q.S. Nguyen, in Proceedings of the IUTAM Symposium on Three-Dimensional Constitutive Relations and Ductile Fracture, S. Nemat-Nasser (ed.), North-Holland Publishing Co. (1981) 315–330.

  22. 22.

    H. Reidel and J.R. Rice, ASTM STP 700, American Society for Testing and Materials (1980) 112–130.

  23. 23.

    N. L. Goldman and J.W. Hutchinson, International Journal of Solids and Structures 11 (1975) 575–591.

  24. 24.

    J.D. Landes and J.A. Begley, ASTM STP 590, American Society for Testing and Materials (1976) 128–148.

  25. 25.

    H. Reidel, Fracture at High Temperature, Springer-Verlag, Berlin-Heidelberg-New York (1986).

  26. 26.

    M. Saka and H. Abé, International Journal of Engineering Science 24 (1986) 455–459.

  27. 27.

    A.J. Carlsson, in Prospects in Fracture Mechanics, G.C. Sih et al. (eds.), Leyden: Noordhoff (1974) 139–158.

  28. 28.

    M. Saka and H. Abe, International Journal of Engineering Science 21 (1983) 1451–1457.

  29. 29.

    C. Truesdell, A First Course in Rational Continuum Mechanics, Academic Press (1977).

  30. 30.

    R. Hill, Journal of the Mechanics and Physics of Solids 34 (1986) 305–317.

  31. 31.

    B. Moran and C.F. Shih to appear in Engineering Fracture Mechanics.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moran, B., Shih, C.F. A general treatment of crack tip contour integrals. Int J Fract 35, 295–310 (1987). https://doi.org/10.1007/BF00276359

Download citation

Keywords

  • Energy Release Rate
  • Crack Front
  • Creep Crack Growth
  • Crack Extension Force
  • Domain Integral Method