Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the integration of the equations of motion in the classical theory of elasticity

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Cauchy, A.-L.: Sur les équations qui expriment les conditions d'équilibre ou les lois du mouvement intérieur d'un corps solide, élastique, ou non-élastique. Exercises de mathématiques, Vol. 3. Paris: De Bure Frères 1828.

  2. [2]

    Poisson, S.-D.: Mémoire sur l'équilibre et le mouvement des corps élastiques. Mém. Acad. Sci. Paris 8, 356 (1829).

  3. [3]

    Poisson, S.-D.: Addition au mémoire sur l'équilibre et le mouvement des corps élastiques. Mém. Acad. Sci. Paris 8, 623 (1829).

  4. [4]

    Todhunter, I., & K. Pearson: A history of the theory of elasticity and of the strength of materials, Vol. 1 and 2. Cambridge: Cambridge University Press 1886.

  5. [5]

    Stokes, G. G.: On the dynamical theory of diffraction. Trans. Camb. Phil. Soc. 9, 1 (1851).

  6. [6]

    Lamé, G.: Leçons sur la théorie mathématique de l'élasticité des corps solides. Paris: Bachelier 1852.

  7. [7]

    Clebsch, A.: Über die Reflexion an einer Kugelfläche. J. reine u. angew. Math. 61, 195 (1863).

  8. [8]

    Lord Kelvin: Baltimore lectures on molecular dynamics and the wave theory of light. London: C. J. Clay & Sons 1904.

  9. [9]

    Duhem, P.: Sur l'intégrale des équations des petits mouvements d'un solide isotrope. Mém. Soc. Sci. Bordeaux, Ser. V 3, 316 (1898).

  10. [10]

    Duhem, P.: Sur la généralisation d'un théorème de Clebsch. J. Math. Pures et Appl. 6, 215 (1900).

  11. [11]

    Sneddon, I. N., & D. S. Berry: The classical theory of elasticity. Handbuch der Physik, Vol. 6. Berlin: Springer 1958.

  12. [12]

    Pearson, C. E.: Theoretical elasticity. Cambridge: Harvard University Press 1959.

  13. [13]

    Bishop, R. E. D.: On dynamical problems of plane stress and plane strain. Quart. J. Mech. Appl. Math. 6, 250 (1953).

  14. [14]

    Papkovich, P. F.: The representation of the general integral of the fundamental equations of elasticity theory in terms of harmonic functions [in Russian]. Izv. Akad. Nauk SSSR, Phys.-Math. Ser. 10, 1425 (1932).

  15. [15]

    Neuber, H.: Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitäts- theorie. Z. angew. Math. Mech. 14, 203 (1934).

  16. [16]

    Iacovache, M.: O extindere a metodei lui Galerkin pentru sistemul ecuaţiilor elasticităţii. Bul. sţiinţ. Acad. Rep. Pop. Române, Ser. A 1, 593 (1949).

  17. [17]

    Moisil, G. C.: Asupra sistemelor de ecuaţii cu derivate parţiale lineare şi cu coeficienţi constanti. Bul. sţiinţ. Acad. Rep. Pop. Române, Ser. A. 1, 341 (1949).

  18. [18]

    Galerkin, B.: Contribution à la solution générale du problème de la théorie de l'élasticité dans le cas de trois dimensions. C. R. Acad. Sci. Paris 190, 1047 (1930).

  19. [19]

    Sternberg, E., & R. A. Eubanks: On stress functions for elastokinetics and the integration of the repeated wave equation. Quart. Appl. Math. 15, 149 (1957).

  20. [20]

    Noll, W.: Verschiebungsfunktionen für elastische Schwingungsprobleme. Z. angew. Math. Mech. 37, 81 (1957).

  21. [21]

    Mindlin, R. D.: Note on the Galerkin and Papkovich stress functions. Bull. Amer. Math. Soc. 42, 373 (1936).

  22. [22]

    Eubanks, R. A., & E. Sternberg: On the completeness of the Boussinesq-Papkovich stress functions. J. Rational Mech. Anal. 5, 735 (1956).

  23. [23]

    Almansi, E.: Süll' integrazione dell' equazione differenziale ▽2n=0. Ann. Mat., Ser. III 2, 1 (1899).

  24. [24]

    Boggio, T.: Sull' integrazione di alcune equazioni lineari alle derivate parziali. Ann. Mat., Ser. III, 8, 181 (1903).

  25. [25]

    Love, A. E. H.: A treatise on the mathematical theory of elasticity, Fourth Ed. Cambridge: Cambridge Univ. Press 1921.

  26. [26]

    Predeleanu, M.: Über die Verschiebungsfunktionen für das achsensymmetrische Problem der Elastodynamik. Z. angew. Math. Mech. 38, 402 (1958).

  27. [27]

    Sobrero, L.: Delle funzioni analoghe a potenziale intervenienti nella Fisica-Matematica. Atti Reale Accad. Lincei, Ser. VI, Rend. 21, 448 (1935).

  28. [28]

    Moisil, G. C.: Teoria preliminară a sistemelor de ecuaţii cu derivate parţiale lineare cu coefficienţi constanţi. Bul. sţiinţ., Acad. Rep. Pop. Române 4 319 (1952).

  29. [29]

    Goodier, J. N.: The mathematical theory of elasticity. Surveys in Applied Mathematics, I. Elasticity and Plasticity. New York: John Wiley & Sons 1958.

  30. [30]

    Sneddon, I. N.: The stress produced by a pulse of pressure moving along the surface of a semi-infinite solid. Rend. Circ. Mat. Palermo, Ser. II 1, 1 (1952).

  31. [31]

    Radok, J. R. M.: On the solution of problems of dynamic plane elasticity. Quart. Appl. Math. 14, 289 (1956).

  32. [32]

    Teodorescu, P. P.: On the plane problem of the elastodynamics. Rev. Mécanique Appl., Acad. Rep. Pop. Roumaine 1, 179 (1956).

  33. [33]

    Deresiewicz, H.: Solution of the equations of thermo-elasticity. Proc. Third U. S. Nat. Cong. Appl. Mech., 1958.

  34. [34]

    Somigliana, C.: Sulle espressioni analitiche generali dei movimenti oscillatori. Atti Reale Accard. Linc. Roma, Ser. 5, 1, 111 (1892).

  35. [35]

    Tedone, O.: Sulle vibrazioni dei corpi solidi, omogenei ed isotropi. Mem. Reale Accad, Scienze Torino, Ser. 2, 47, 181 (1897).

  36. [36]

    Arzhanikh, I. S.: Integration of the equations of the basic problems of field theory (in Russian). Akad. Nauk Usbekskoi CCR, Trudi, Inst. Mat. Mekh., Report No. 13, 1954.

  37. [37]

    Solomon, L.: Functii-potential de deplasare pentru ecuatiile dinamice ale lui Lamé. Com. Acad. Rep. Pop. Romine, 8, 647 (1958).

Download references

Author information

Additional information

This paper was prepared under Contract Nour 562(25) of Brown University with the Office of Naval Research, Washington, D. C.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sternberg, E. On the integration of the equations of motion in the classical theory of elasticity. Arch. Rational Mech. Anal. 6, 34–50 (1960). https://doi.org/10.1007/BF00276152

Download citation

Keywords

  • Neural Network
  • Complex System
  • Nonlinear Dynamics
  • Classical Theory
  • Electromagnetism