Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Models for pair formation in bisexual populations

  • 219 Accesses

  • 91 Citations

Abstract

Birth, death, pair formation, and separation are described by a system of three nonlinear homogeneous ordinary differential equations. The qualitative properties of the system are investigated, in particular the conditions for existence and global stability of the bisexual state.

This is a preview of subscription content, log in to check access.

References

  1. Dietz, K., Hadeler, K. P.: Epidemiological models for sexually transmitted diseases. J. Math. Biol. 26, 1–25 (1988)

  2. Dowse, H. B., Ringo, J. M., Barton, K. M.: A model describing the kinetics of mating in Drosophila. J. Theor. Biol. 121, 173–183 (1986)

  3. Fredrickson, A. G.: A mathematical theory of age structure in sexual populations: Random mating and monogamous marriage models. Math. Biosci. 10, 117–143 (1971)

  4. Hadeler, K. P., Glas, D.: Quasimonotone systems and convergence to equilibrium in a population genetic model. J. Math. Anal. Appl. 95, 297–303 (1983)

  5. Hadeler, K. P., Waldstätter, R., Wörz-Busekros, A.: Models for pair formation. In: Conference Report, Deutsch-Französisches Treffen über Evolutionsgleichungen, Blaubeuren, 3.–9. Mai 1987, Semesterbericht Funktionalanalysis Tübingen 1987, pp. 31–40

  6. Hadeler, K. P.: Pair formation in age structured populations. In: Kurzhanshij, A., Sigmund, K. (eds.) Proceedings, Workshop on Selected Topics in Biomathematics, IIASA, Laxenburg, Austria 1987

  7. Hirsch, M. W.: Systems of differential equations which are competitive or cooperative I. Limit sets. SIAM J. Math. Anal. 13, 167–179 (1982)

  8. Hofbauer, J., Sigmund, K.: Evolutionstheorie und dynamische Systeme. Berlin Hamburg: Parey 1984

  9. Impagliazzo, J.: Deterministic aspects of mathematical demography. (Biomathematics, vol. 13) Berlin Heidelberg New York: Springer 1985

  10. Karlin, S., Lessard, S.: Theoretical studies on sex ratio evolution. (Monographs in population biology, vol. 22) Princeton: Princeton University Press 1986

  11. Kendall, D. G., Stochastic processes and population growth. Roy. Statist. Soc., Ser B 2, 230–264 (1949)

  12. Keyfitz, N.: The mathematics of sex and marriage. Proceedings of the Sixth Berkeley Symposion on Mathematical Statistics and Probability. Vol. IV: Biology and health, pp. 89–108 (1972)

  13. McFarland, D. D., Comparison of alternative marriage models. In: Greville, T. N. T. (ed.) Population dynamics, pp. 89–106, New York London: Academic Press 1972

  14. Parlett, B.: Can there be a marriage function? In: Greville, T. N. T. (ed.) Population Dynamics pp. 107–135. New York London: Academic Press 1972

  15. Pollak, R. E.: The two-sex problem with persistent unions: a generalization of the birth matrix-mating rule model. Theor. Popul. Biol. 32, 176–187 (1987)

  16. Pollard, J. H.: Mathematical models for the growth of human populations, Chap. 7: The two sex problem. Cambridge: Cambridge University Press 1973

  17. Staroverov, O. V.: Reproduction of the structure of the population and marriages. (Russian) Ekonomika i matematičeskije metody 13, 72–82 (1977)

  18. Wallace, B.: Mating kinetics in Drosophila. Behav. Sci. 30, 149–154 (1985)

  19. Wallace, B.: Kinetics of mating in Drosophila. I, D. melanogaster, an ebony strain, preprint. Dept. Biol., Virginia Polytechnic and State University

  20. Williams, G. C: Sex and evolution. Monographs in population biology, vol. 8. Princeton: Princeton University Press 1975

Download references

Author information

Additional information

This work has been supported by the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hadeler, K.P., Waldstätter, R. & Wörz-Busekros, A. Models for pair formation in bisexual populations. J. Math. Biology 26, 635–649 (1988). https://doi.org/10.1007/BF00276145

Download citation

Key words

  • Pair formation
  • Two-sex population
  • Homogeneous evolution equation