Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of different conformations of galactose messenger RNA on gene expression and messenger half-life in vitro

  • 26 Accesses

  • 6 Citations

Summary

From a DNA-directed cell-free system, functional gal mRNA is obtained which directs the cell-free synthesis of the three galactose enzymes of Escherichia coli. A substantial fraction of this gal mRNA has the properties of a polycistronic messenger.

Exposure to elevated temperatures in the presence or absence of magnesium ion results in pronounced changes of the capacity of this mRNA to give rise to the synthesis of the three enzymes. Depending on the conditions of the pre-treatment, the absolute amounts as well as the ratio of the three gene products synthesized can be changed. The different forms of gal messenger so obtained also exhibit different susceptibilities towards functional inactivation during the enzyme synthesis reaction.

As the changes in template activity are reversible, it is concluded that the different treatments cause reversible transitions between different conformations of the gal mRNA.

This is a preview of subscription content, log in to check access.

References

  1. Achord, D., Kennell, D.: Metabolism of messenger RNA from the gal operon of Escherichia coli. J. molec. Biol. 90, 581 (1974)

  2. Adhya, S., Gottesman, M., de Crombrugghe, B.: Release of polarity in Escherichia coli by gene N of phage lambda: termination and antitermination of transcription. Proc. nat. Acad. Sci. (Wash.) 71, 2534 (1974)

  3. Blundell, M., Craig, E., Kennell, D.: Decay rates of different mRNA in E. coli and models of decay. Nature (Lond.) New Biol. 238, 46 (1972)

  4. Fiethen, L., Starlinger, P.: Mutations in the galactose operator. Molec. gen. Genet. 108, 322 (1970)

  5. Forchhammer, J., Jackson, E. N., Yanofsky, Ch.: Different half lives of messenger RNA corresponding to different segments of the tryptophan operon of Escherichia coli. J. molec. Biol. 71, 687 (1972)

  6. Franklin, N. C.: Altered reading of genetic signals fused to the N gene operon of bacteriophage λ: Genetic evidence for modification of polymerase by the protein product of the N gene. J. molec. Biol., 89, 33 (1974)

  7. Fukami, H., Imahori, K.: Control of translation by the conformation of messenger RNA. Proc. nat. Acad. Sci (Wash.) 68, 570 (1971)

  8. Gralla, J., De Lisi, C.: mRNA is expected to form stable secondary structures. Nature (Lond.) 248, 330 (1974)

  9. Gralla, J., Steitz, J. A., Crothers, D. M.: Direct physical evidence for secondary structure in an isolated fragment of R17 bacteriophage mRNA. Nature (Lond.) 248, 204 (1974)

  10. Hilbers, C. W., Schulman, R. G., Yamane, T., Steitz, J. A.: High resolution proton NMR study, of an isolated fragment of R17 bacteriophage mRNA. Nature (Lond.) 248, 225 (1974)

  11. Jeppesen, P. G. N., Nichols, J. L., Sanger, F., Barrell, B. G.: Nucleotide sequences from bacteriophage R17 RNA. Cold Spr. Harb. Symp. quant. Biol. 35, 13 (1970)

  12. Kozak, M., Nathans, D.: Translation of the genome of a ribonucleic acid bacteriophage. Bacteriol. Rev. 36, 109 (1972)

  13. Lindberg, U., Persson, T.: Isolation of mRNA from KB-cells by affinity chromatography on polyuridylic acid covalently linked to sepharose. Europ. J. Biochem. 31, 246 (1972)

  14. Lodish, H. F., Robertson, H. D.: Regulation of in vitro translation of bacteriophage f2 RNA. Cold Spr. Harb. Symp. quant. Biol. 34, 189 (1969)

  15. Min Iou, W., Haegeman, G., Ysebaert, M., Fiers, W.: Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature (Lond.) 237, 82 (1972)

  16. Nirenberg, M. W.: Cell-free protein synthesis directed by messenger RNA. In: Methods in enzymology (S. P. Colowick and N. O. Kaplan, eds.), vol. 6, p. 17, New York-London: Academic Press 1963

  17. Ricard, B., Salser, W.: Size and folding of the messenger for phage T4 lysozyme. Nature (Lond.) 248, 314 (1974)

  18. Schumacher, G., Ehring, R.: RNA-directed cell-free synthesis of the galactose enzymes of Escherichia coli. Molec. gen. Genet. 124, 329–344 (1973)

  19. Starlinger, P., Saedler, H., Rak, B., Tillmann, E., Venkov, P., Waltschewa, L.: mRNA distal to polar nonsense and insertion mutations in the gal operon of E. coli. Molec. gen. Genet. 122, 279 (1973)

  20. Steitz, J. A.: Specific recognition of the isolated R17 replicase initiator region by R17 coat protein. Nature (Lond.) 248, 223 (1974)

  21. Wetekam, W., Staack, K., Ehring, R.: Relief of polarity in DNA-dependent cell-free synthesis of enzymes of the galactose operon of Escherichia coli. Molec. gen. Genet. 116, 258 (1972)

  22. Zalkin, H., Yanofsky, C., Squires, K.: Regulated in vitro synthesis of Escherichia coli tryptophan operon messenger ribonucleic acid and enzymes. J. Biol. Chem. 249, 465 (1974)

Download references

Author information

Additional information

Communicated by H. G. Wittmann

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schumacher, G., Ehring, R. Effect of different conformations of galactose messenger RNA on gene expression and messenger half-life in vitro . Molec. Gen. Genet. 136, 41–54 (1975). https://doi.org/10.1007/BF00275447

Download citation

Keywords

  • Enzyme
  • Escherichia Coli
  • Magnesium
  • Elevated Temperature
  • Gene Product