Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Traditional Cavalieri principles applied to the modern notion of area

This is a preview of subscription content, log in to check access.

References

  1. Barnard, Mark: Translation by Mark Barnard with the assistance of the author.

  2. BondiH. & T.Gold: ‘The Steady-State Theory of the Expanding Universe,’ Mon. Not. R. Astron. Soc. 108 (1948), 252–270.

  3. BoyerCarl B.: A History of Mathematics, John Wiley & Sons, Inc., New York, New York, 1968.

  4. Brunner, Norbert: ‘Mathematische Intuition, Kontinuumshypothese und Auswahlaxiom’, Jahrbuch 1988 der Kurt-Gödel-Gesellschaft, 96–101.

  5. Cavalieri, Francesco Bonaventura: Geometria indivisibilibus continuorum nova quadam ratione promota, Bologna, Italy, 1635, 2nd ed. 1653.

  6. DaviesRoy O.: ‘Covering the Plane with Denumerably Many Curves,’ Journal of the London Mathematical Society 38 (1963) 433–438.

  7. DijksterhuisEduard Jan: Archimedes, Princeton University Press, Princeton, New Jersey, 1987. Translated by C. Dikshoorn. (Reprint of original 1956 edition.).

  8. EvesHoward: An Introduction to the History of Mathematics, 5th ed., Saunders College Publishing, Philadelphia, Pennsylvania, 1983.

  9. FreilingChris: ‘Axioms of Symmetry: Throwing Darts at the Real Number Line,’ The Journal of Symbolic Logic 51(1) (March 1986), 190–200.

  10. Freiling, Chris: personal communication.

  11. GödelKurt: ‘What Is Cantor's Continuum Problem?,’ The American Mathematical Monthly 54 (November 1947), 515–525.

  12. HawkingStephen: A Brief History of Time: From the Big Bang to Black Holes, Bantam Books, New York, New York, 1988.

  13. HeathT. L.: The Method of Archimedes Recently Discovered by Heiberg, Cambridge University Press, New York, New York, 1912. Reprinted along with (Heath, 1897) by Dover.

  14. HeathT. L.: The Works of Archimedes, Cambridge University Press, New York, New York, 1897. Reprinted along with (Heath, 1912) by Dover.

  15. HewittEdwin & KarlStromberg: Real and Abstract Analysis, Springer-Verlag New York, Inc., New York, 1965.

  16. HoyleF.: ‘A New Model for the Expanding Universe,’ Mon. Not. R. Astron. Soc. 108(1948), 372–382.

  17. JechThomas: Set Theory, Academic Press, New York, 1978.

  18. Knorr, Wilbur R.: ‘Archimedes after Dijksterhuis: A Guide to Recent Studies,’ 1987. In (Dijksterhuis, 1987, pp. 419–451).

  19. LamLay-Yong & ShenKangsheng: ‘The Chinese Concept of Cavalieri's Principle and Its Applications,’ Historia Mathematica 12 (1985), 219–228.

  20. MaddyPenelope: ‘Believing the Axioms. I,’ The Journal of Symbolic Logic 53 (2) (June 1988), 481–511.

  21. MisnerCharles W., Kip S.Thorne, & John ArchibaldWheeler: Gravitation, W. H. Freeman and Company, San Francisco, California, 1973.

  22. ReichenbachHans. The Theory of Probability, 2nd ed., University of California Press, Berkeley, California, 1949.

  23. RoydenH. L., Real Analysis, 2nd ed., The Macmillan Company, New York, 1968.

  24. SierpińskiWacław: Hypothèse du Continu, 2nd ed., Chelsea Publishing Company, New York, 1956.

  25. SierpińskiWacław: ‘On the Congruence of Sets and Their Equivalence by Finite Decomposition,’ in Congruence of Sets and Other Monographs, Chelsea Publishing Company, the Bronx, New York, 1954.

  26. SierpińskiWacław: Leçons sur les nombres transfinis, Gauthier-Villars, Paris, 1928.

  27. SierpińskiWacław: Leçons sur les nombres transfinis, Nouveau tirage, Collection de Monographies sur la Théorie des fonctions, publiée sous la direction de M. Émile Borel, Gauthier-Villars, Paris, 1950. Reprint of (Sierpiński, 1928).

  28. SmithDavid Eugene: History of Mathematics, Ginn and Company, Boston, 1923.

  29. WagonStan: The Banach-Tarski Paradox, Cambridge University Press, Cambridge, England, 1985.

  30. Webster's New Biographical Dictionary, Rev. ed. of Webster's Biographical Dictionary, Merriam-Webster Inc., Springfield, Massachusetts, 1983.

  31. WillardStephen: General Topology, Addison Welsey Publishing Company, Reading, Massachusetts, 1970.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simms, J.C. Traditional Cavalieri principles applied to the modern notion of area. J Philos Logic 18, 275–314 (1989). https://doi.org/10.1007/BF00274068

Download citation

Keywords

  • Modern Notion
  • Cavalieri Principle