Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Are allozymes differing in substrate specificity involved in the evolution of Silene species?

  • 28 Accesses

  • 6 Citations

Summary

The concerted action of two flavone-skeleton modifying genes, P and Me, and the alleles of three independently segregating loci g, gl and fg involved in flavone-glycosylation lead to the 33 different flavones so far identified in Silene. The alleles of the different loci involved in flavone-glycosylation control enzymes which differ in substrate specificity, a phenomenon not often described in higher organisms. The alleles of the different loci are variously distributed over the different species. The possible evolutionary implications of these distributions are discussed.

This is a preview of subscription content, log in to check access.

Literature

  1. Besson, E.; Besset, A.; Bouillant, M.L.; Chopin, J.; Brederode, J. van; Nigtevecht, G. van (1979): Genetically controlled 2″-O-glycosylation of isovitexin in the petals of Melandrium album. Phytochemistry 18, 657–658

  2. Brederode, J. van; Kamps-Heinsbroek, R. (1982): Biochemical and ontogenetic envidence that the ferulic acid and isoscoparin formation in Silene are catalyzed by different enzymes. Z. Pflanzenphysiol. 106, 43–53

  3. Brederode, J. van; Nigtevecht, G. van (1972): The genetic control of isovitexin glycosylation in the petals of Melandrium album. Mol. Gen. Genet. 118, 247–259

  4. Brederode, J. van; Nigtevecht, G. van (1974 a): Dominance relationships between two allelic genes controlling glycosyltransferases with different substrate specificity in Melandrium. Genetics 77, 507–520

  5. Brederode, J. van; Nigtevecht, G. van (1974 b): Genetic control and biosynthesis of two new flavone-glycosides in the petals of Melandrium album. Biochem. Genet. 11, 65–81

  6. Brederode, J. van; Niemann, G.H.; Nigtevecht, G. van (1980): Genetic, ontogenetic and geographical variation in the C-glycosylflavone patterns of Silene alba and S. dioica. Planta Medica 39, 21

  7. Cavalli-Sforza, L.L.; Bodmer, W.F. (1971): Polymorphisms for blood groups, transplantation antigens and serum proteins: incompatibility selection. In: The genetics of human populations, pp. 190–288. San Francisco: W.H. Freeman and Co.

  8. Clarke, P.H. (1974): The evolution of enzymes for the utilisation of novel substrates. In: Evolution in the microbial world (eds. Carlile, M.J.; Skehel, J.J.), pp. 183–217. Symp. Soc. Gen. Microbiol. 24

  9. Clarke, P.H. (1981): Enzymes in bacterial populations. In: Biochemical evolution (ed. Gutfreund, H.), pp. 116–149. London: Cambridge Univ. Press

  10. Ginsburg, V. (1972): Enzymatic basis for bloodgroups in man. Adv. Enzymol. Rel. Subj. Biochem. 26, 131–149

  11. Hall, G. (1978): Experimental evolution of a new enzymatic function. II. Evolution of multiple functions for ebg enzyme in E. coli. Genetics 89, 453–465

  12. Hartley, B.S. (1974): Enzyme families. In: Evolution in the microbial world (eds. Charlile, M.J.; Skehel, J.J.), pp. 151–182. Symp. Soc. Gen. Biol. 19

  13. Heinsbroek, R.; Brederode, J. van; Nigtevecht, G. van; Kampsteeg, J. (1979): Biosynthesis and genetic control of isovitexin 2″-O-arabinoside in petals of Silene dioica. Phytochemistry 18, 935–937

  14. Lewontin, R.C. (1974): The genetic basis of evolutionary change. New York: Columbia Univ. Press

  15. Lin, E.C.C.; Hacking, A.J.; Aguilar, J. (1976): Experimental models of acquisitive evolution. BioScience 26, 548–555

  16. Mastenbroek, O.; Maas, J.W.; Brederode, J. van; Niemann, G.J.; Nigtevecht, G. van (1982): The geographic distribution of flavone-glycosylating genes in Silene pratensis. Genetica 59, 139–144

  17. McClure, W. (1975): Physiology and functions of flavonoids. In: The flavonoids (eds. Harborne, J.B.; Mabry, T.J.; Mabry, H.), pp. 970–1056. London: Chapman and Hall

  18. Mortlock, R.P. (1976): Catabolism of unnatural carbohydrates by microorganisms. Adv. Microb. Physiol. 13, 1–53

  19. Mortlock, R.P. (1982): Regulatory mutations and the development of new metabolic pathways by bacteria. Evol. Biol. 14, 205–268

  20. Oppenoorth, F.J. (1965): Biochemical genetics of insecticide resistance. Ann. Rev. Entomol. 10, 185–206

Download references

Author information

Additional information

Communicated by H.F. Linskens

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Brederode, J., Mastenbroek, O. Are allozymes differing in substrate specificity involved in the evolution of Silene species?. Theoret. Appl. Genetics 64, 151–153 (1983). https://doi.org/10.1007/BF00272725

Download citation

Key words

  • Allozymes
  • Differing substrate specificity
  • Flavonoids
  • Flavonoid-glycosylation
  • Gene evolution
  • Silene species