Advertisement

Molecular and General Genetics MGG

, Volume 177, Issue 4, pp 691–698 | Cite as

W-mutagenesis in competent cells of Bacillus subtilis

  • S. E. Bresler
  • V. L. Kalinin
  • R. A. Kreneva
Article

Summary

The relative yield (Nm/N) of fluorescent mutants Ind- after the transformation of Bacillus subtilis cells by means of UV-irradiated DNA is much higher in an uvr- recipient than in an uvr+ strain, when compared at equal fluence, but practically identical at equal survival. Ind- mutations are induced by UV-irradiation of separated single strands of transforming DNA. The H-strand is much more sensitive to the mutagenic action of UV light. Preliminary irradiation of competent recipient cells by moderate UV fluences increases the survival of UV-or γ-irradiated transforming DNA (W-reactivation) and the frequency of Ind- mutations (W-mutagenesis). During transfection of B. subtilis cells by UV-irradiated prophage DNA isolated from lysogenic cells B. subtilis (Ø105 c+) c-mutants of the phage are obtained in high yield only in conditions of W-mutagenesis, i.e. in UV-irradiated recipient cells. These data show that there is no substantial spontaneous induction of error-prone SOS-repair system in the competent cells of B. subtilis.

Keywords

Bacillus Bacillus Subtilis Competent Cell Single Strand Relative Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, A.F., Leis, U.: Transfection with heteroduplex SPP1 DNA: a pyrimidine dimer induced influence on the conversion pattern. Molec. Gen. Genet. 139, 103–119 (1975)Google Scholar
  2. Anagnostopoulos, C., Spizizen, J.: Requirements for transformation in Bacillus subtilis. J. Bacteriol, 81, 741–746 (1961)Google Scholar
  3. Bodmer, W.F., Ganesan, A.T.: Biochemical and genetic studies on recombination in Bacillus subtilis transformation. Genetics 50, 717–738 (1964)Google Scholar
  4. Bresler, S.E.: Theory of misrepair mutagenesis. Mutat. Res. 29, 476–487 (1975)Google Scholar
  5. Bresler, S.E., Kalinin, V.L., Perumov, D.A.: Inactivation and mutagenesis on isolated DNA. I. Theory of inactivation of transforming DNA. Mutat. Res. 4, 389–398 (1967)Google Scholar
  6. Bresler, S.E., Kalinin, V.L., Perumov, D.A.: Inactivation and mutagenesis on isolated DNA. II. Kinetics of mutagenesis and effieiency of various mutagens. Mutat. Res. 5, 1–14 (1968)Google Scholar
  7. Bresler, S.E., Kalinin, V.L., Perumov, D.A.: Inactivation and mutagenesis on isolated DNA. V. The importance of repairing enzymes for the inactivation of transforming DNA in vitro. Mutat. Res. 9, 1–19 (1970)Google Scholar
  8. Bresler, S.E., Kreneva, R.A., Kushev, V.V.: Molecular heterozygotes in Bacillus subtilis and their correction. Mol. Gen. Genet. 113, 204–213 (1971)Google Scholar
  9. Bresler, S.E., Perumov, D.A.: Chemical mutagenesis on isolated DNA and bacterial transformation. Biokhimiya 27, 927–937 (1962)Google Scholar
  10. Bresler, S.E., Perumov, D.A.: Mutagenesis on isolated DNA under the action of ultraviolet radiation and chemical agents. Dokl. Akad. Nauk U.S.S.R. 158, 967–969 (1964)Google Scholar
  11. Bridges, B.A.: Recent advances in basic mutation research. Mutat. Res. 44, 149–164 (1977)Google Scholar
  12. Bridges, B.A., Motershead, R.P.: Mutagenic DNA repair in Escherichia coli. VII. Constitutive and inducible manifestations. Mutat. Res. 52, 151–159 (1978)Google Scholar
  13. Bron, S., Venema, G.: Ultraviolet inactivation and excision repair in Bacillus subtilis. IV. Integration and repair of ultraviolet-inactivated transforming DNA. Mutat. Res. 15, 395–409 (1972)Google Scholar
  14. Ephrussi-Taylor, H., Sicard, A.M., Kamen, R.: Genetic recombination in DNA-induced transformation of Pneumoccocus. I. The problem of relative efficiency of transforming factors. Genetics 51, 455–475 (1965)Google Scholar
  15. Freese, E., Strack, H.B.: Induction of mutations in transforming DNA by hydroxylamine. Proc. Natl. Acad. Sci. U.S.A. 48, 1796–1803 (1962)Google Scholar
  16. Kalinin, V.L., Kreneva, R.A.: W-reactivation and W-mutagenesis of UV-irradiated phage Ø105 of Bacillus subtilis. Genetika (USSR) 13, 1268–1280 (1977)Google Scholar
  17. Lacks, S.: Mutants of Diplococcus pneumoniae that lack deoxyribonuclease and other activities possibly pertinent to genetic transformation. J. Bacteriol. 101, 373–383 (1970)Google Scholar
  18. Litman, R.M.: Ephrussi-Taylor, H.: Inactivation et mutation des facteurs gènètiques de l'acide desoxyribonucleic du pneumocoque par l'ultraviolet et par l'acide nitreux. C.R. Acad. Sci. Paris, Ser. D. 249, 838–841 (1959)Google Scholar
  19. Munakata, N.: Mapping of genes controlling excision repair of pyrimidine dimers in Bacillus subtilis. Mol. Gen. Genet. 156, 49–54 (1977)Google Scholar
  20. Rutberg, L., Hoch, J.A., Spizizen, J.: Mechanism of transfection with deoxyribonucleic acid from temperate Bacillus bacteriophage Ø105. J. Virol. 4, 50–57 (1969)Google Scholar
  21. Setlow, J.K., Boling, M.E.: Bacteriophage of Haemophilus influenzae. II. Repair of ultraviolet-irradiated phage DNA and the capacity of irradiated DNA to make phage. J. Mol. Biol. 63, 349–362 (1972)Google Scholar
  22. Sgroi, G., Cordone, L., Fornili, S.L.: Repair of U.V. damages in Bacillus subtilis cultures competent for transformation: difference between competent and non-competent fractions, Nucleic Acids Res. 2, 1569–1578 (1975)Google Scholar
  23. Spatz, H.Ch., Trautner, T.A.: One way to do experiments on gene conversion? Transfection with heteroduplex SPP1 DNA. Mol. Gen. Genet. 109, 84–106 (1970)Google Scholar
  24. Witkin, E.M.: Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 40, 869–907 (1977)Google Scholar
  25. Yasbin, R.E.: DNA repair in Bacillus subtilis. I. The presence of an inducible system Mol. Gen. Genet. 153, 211–218 (1977).Google Scholar
  26. Yasbin, R.E.: DNA repair in Bacillus subtilis. II. Activation of the inducible system in competent bacteria. Mol. Gen. Genet. 153, 219–225 (1977)Google Scholar
  27. Yasbin, R.E., Wilson G.E., Young, F.E.: Transformation and transfection in lysogenic strains of Bacillus subtilis: evidence for selective induction of prophage in competent cells. J. Bacteriol. 121, 296–304 (1975)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • S. E. Bresler
    • 1
  • V. L. Kalinin
    • 1
  • R. A. Kreneva
    • 1
  1. 1.Leningrad Institute of Nuclear PhysicsAcademy of Sciences of the USSRLeningradUSSR

Personalised recommendations