Advertisement

Child's Nervous System

, Volume 2, Issue 3, pp 109–111 | Cite as

The concentrations of xanthine and hypoxanthine in cerebrospinal fluid as therapeutic guides in hydrocephalus

  • M. Castro-Gago
  • S. Lojo
  • R. Del Rio
  • A. Rodriguez
  • I. Novo
  • S. Rodriguez-Segade
Original Papers

Abstract

Xanthine, hypoxanthine, and total oxypurine levels were determined in the cerebrospinal fluid of 18 hydrocephalic patients and 8 healthy controls by high-performance liquid chromatography (HPLC). Eight of the hydrocephalic patients were self-compensated and 10 had shunts implanted during the course of the study. The mean xanthine, hypoxanthine, and total oxypurine levels in the normal children were 5.20, 5.94 and 11.29 μmol/l, respectively. In self-compensated hydrocephalics these levels were respectively 6.06, 6.50 and 12.57 μmol/l. In noncompensated hydrocephalics, they were 11.40, 10.79 and 22.19 μmol/l. The differences between the latter group and the first two are statistically significant (P<0.001). Fifteen days after implantation of shunts in the noncompensated hydrocephalics, the mean xanthine levels had fallen to 4.61 μmol/l, the mean hypoxanthine levels to 5.03 μmol/l, and the mean total oxypurine levels to 9.64 μmol/l. The change is statistically significant (P<0.001). In light of these findings we propose that xanthine, hypoxanthine, and total oxypurine levels be used in cases of hydrocephalus as guides for therapeutic action and to monitor progress.

Key words

Hydrocephalus Cerebrospinal fluid Total oxypurines Xanthine Hypoxanthine Guanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bejar R, Saugstad OD, James H, Gluck L (1983) Increased hypoxanthine concentrations in cerebrospinal fluid of infants with hydrocephalus. J Pediatr 103:44–48CrossRefGoogle Scholar
  2. 2.
    Berne RM (1963) Cardiac nucleotides: possible role in regulation of coronary flow. Am J Physiol 204:317–322CrossRefGoogle Scholar
  3. 3.
    Berne RM, Rubio R, Curnish RR (1974) Release of adenosine from ischaemic brain. Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 35:262–271CrossRefGoogle Scholar
  4. 4.
    Castro-Gago M, Tato F, Martinez Rumbo R, Pavón P, Fraga JM (1980) Hidrocefalias no tumorales de la infancia. Importancia del estudio de la dinámica del LCR para el diagnóstico y actitud terapeútica. Rev Esp Pediatr 36:61–74Google Scholar
  5. 5.
    Castro-Gago M, Allut AG, Pavón P, Fraga JM, Pombo M, Peña J (1981) La tensión del LCR como criterio del tipo de válvula en el tratamiento de las hidrocefalias infantiles no tumorales. Rev Esp Pediatr 37:209–214Google Scholar
  6. 6.
    Castro-Gago M, Novo I, Ugarte J, Pombo M, Tojo R, Peña J (1986) Criterios de autocompensación en las hidrocefalias infantiles. Rev Esp Pediatr 42:237–242Google Scholar
  7. 7.
    Deuticke B, Gerlach E (1966) Abbau freier Nucleotide in Herz, Skeletmuskel, Gehirn und Leber der Ratte bei Sauerstoffmangel. Pflügers Arch 292:239–254CrossRefGoogle Scholar
  8. 8.
    Drews LR, Gilbee DD, Betz AL (1973) Metabolic alterations in brain during anoxia and subsequent recovery. Arch Neurol 29:385–390CrossRefGoogle Scholar
  9. 9.
    Hagderg B, Naglo AS (1972) The conservative management of infantile hydrocephalus. Acta Pediatr Scand 61:165–177CrossRefGoogle Scholar
  10. 10.
    Harkness RA, Lund RJ (1983) Cerebrospinal fluid concentrations of hypoxanthine, xanthine, uridine and inosine: high concentrations of the ATP metabolite, hypoxanthine after hypoxia. J Clin Pathol 36:1–8CrossRefGoogle Scholar
  11. 11.
    Hartwick RA, Assenza SP, Brown PR (1979) Identification and quantitation of nucleosides, bases and other UV-absorbing compounds in serum, using reversed-phase high-performance liquid chromatography. J Chromatogr 186:647–658CrossRefGoogle Scholar
  12. 12.
    Hill A, Volpe J (1982) Decrease in pulsative flow in the anterior cerebral arteries in infantile hydrocephalus. Pediatrics 69:4–12PubMedGoogle Scholar
  13. 13.
    Levin SD, Brown JK, Harkness RA (1984) Cerebrospinal fluid hypoxanthine and xanthine concentrations as indicators of metabolic damage due to raised intracranial pressure in hydrocephalics children. J Neurol Neurosurg Psychiatry 47:730–733CrossRefGoogle Scholar
  14. 14.
    Meberg A, Saugstad OD (1978) Hypoxanthine in cerebrospinal fluid in children. Scand J Clin Lab Invest 38:437–440CrossRefGoogle Scholar
  15. 15.
    Nordstrom CH (1977) Adenosine in rat cerebral cortex: its determination normal values and correlation to AMP and cyclic AMP during short-lasting ischemia. Acta Physiol Scand 101:63–71CrossRefGoogle Scholar
  16. 16.
    Raijiz J, Kindt J, McGilliway J, et al. (1976) Cerebrospinal fluid lactate and lactate pyruvate ratios in hydrocephalus. J Neurosurg 44:337–341CrossRefGoogle Scholar
  17. 17.
    Saugstad OD (1975) The determination of hypoxanthine and xanthine with a pO2 electrode. Pediatr Res 9:575–579CrossRefGoogle Scholar
  18. 18.
    Saugstad OD (1977) Hypoxanthine as an indicator of tissue hypoxia. J Oslo City Hosp 27:29–40PubMedGoogle Scholar
  19. 19.
    Winn HR, Rubio R, Berne RM (1979) Brain adenosine production in the rat during 60 seconds of ischemia. Circ Res 45:486–492CrossRefGoogle Scholar
  20. 20.
    Zachary RB (1971) Recent advances in the management of myelomeningocele. In: Richard PP, Hecker NCh, Prevot J (eds) Pediatric surgery. Masson, Paris, pp 155–211Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • M. Castro-Gago
    • 1
  • S. Lojo
    • 2
  • R. Del Rio
    • 2
  • A. Rodriguez
    • 1
  • I. Novo
    • 1
    • 2
  • S. Rodriguez-Segade
    • 2
  1. 1.Department of Pediatrics, Neuropediatrics ServiceUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Central Laboratory Service, General Hospital de Galicia, School of MedicineUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations