Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

High efficiency temperature-sensitive amber suppressor strains of Escherichia coli K12

Construction and characterization of recombinant strains with suppressor-enhancing mutations

  • 28 Accesses

  • 23 Citations

Summary

A set of eight strains combining the supD43,74 ts1 suppressor gene with alleles of three suppressor-enhancing (sue) genes have been constructed and characterized. The sue mutations work cooperatively to raise suppressor activity and together raise the activity of the supD43, 74-encoded suppressor 40-fold. These strains further expand the utility of the ts suppressor system by providing as much as 100% suppressor activity at temperatures at or below 20°C to as little as 0.015% suppressor activity at 43°C.

This is a preview of subscription content, log in to check access.

References

  1. Austin, S.J., Tittawella, I.P.B., Hayward, R.S., Scaife, J.G.: Amber mutations of Escherichia coli RNA polymerase. Nature New Biol. 232, 133–136 (1971)

  2. Bachmann, B.J., Low, K.B., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K12. Bacteriol. Rev. 40, 116–167 (1976)

  3. Errington, L., Glass, R.E., Hayward, R.S., Scaife, J.G.: Structure and orientation of an RNA polymerase operon in Escherichia coli. Nature 249, 519–522 (1974)

  4. Feinstein, S., Altman, S.: Coding properties of an ochre-suppressing derivative of Eschrichia coli tRNAtyr. J. Mol. Biol. 112, 453–470 (1977)

  5. Feinstein, S., Altman, S.: Contex effects on nonsense codon suppression in Escherichia coli. Genetics 88, 201–219 (1978)

  6. Haggerty, D.M., Oeschger, M.P., Schleif, R.F.: In vivo titration of araC protein. J. Bacteriol. 135, 775–781 (1978)

  7. Hayward, R.S., Austin, S.J., Scaife, J.G.: The effect of gene dosage on the synthesis and stability of RNA polymerase subnits in Escherichia coli. Mol. Gen. Genet. 131, 173–180 (1974)

  8. Oeschger, M.P.: Rich culture medium for the radiochemical labeling of proteins and nucleic acids. J. Bacteriol. 134, 913–919 (1978)

  9. Oeschger, M.P.: Applications of temperature-sensitive suppressors to the study of cellular biochemistry and physiology. In: Transfer RNA, Part 2: Biological aspects, p. 363–377. (J. Abelson, P. Schimmel and D. Söll, eds.). New York: Cold Spring Harbor Press 1980

  10. Oeschger, M.P., Berlyn, M.K.: Regulation of RNA polymerase synthesis in Escherichia coli: a mutant unable to synthesize the enzyme at 43° C. Proc. Natl. Acad. Sci. U.S.A. 72, 911–915 (1975)

  11. Oeschger, M.P., Oeschger, N.S., Wiprud, G.T., Woods, S.L.: High efficiency temperature-sensitive amber suppressor strains of Escherichia coli: isolation of strains with suppressor-enhancing mutations. Mol. Gen. Genet. 177, 545–552 (1980)

  12. Oeschger, M.P., Woods, S.L.: A temperature-sensitive suppressor enabling the manipulation of the level of indivudual proteins in intact cells. Cell 7, 205–212 (1976)

  13. Vogel, H.J., Bonner, D.M.: Acetylornithinase of Escherichia coli: partial purification and some properties. J. Biol. Chem. 218, 97–106 (1956)

  14. Yahata, H., Ocada, Y., Tsugita, A.: Adjacent effect on suppression efficiency. II. Study on ochre and amber mutants of T4 phage lysozyme. Mol. Gen. Genet. 106, 208–212 (1970)

Download references

Author information

Correspondence to Max P. Oeschger.

Additional information

Communicated by E. Bautz

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oeschger, M.P., Wiprud, G.T. High efficiency temperature-sensitive amber suppressor strains of Escherichia coli K12. Molec. Gen. Genet. 178, 293–299 (1980). https://doi.org/10.1007/BF00270475

Download citation

Keywords

  • Escherichia Coli
  • Suppressor Gene
  • Suppressor Activity
  • Suppressor Strain
  • Suppressor System