Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biochemical studies on the Nit mutants of Neurospora crassa

  • 56 Accesses

  • 44 Citations


One allele at each of the five nit loci in Neurospora crassa together with the wild type strain have been compared on various nitrogen sources with regard to (i) their growth characteristics (ii) the level of nitrate reductase and its associated activities (reduced benzyl viologen nitrate reductase and cytochrome c reductase) (iii) the level of nitrite reductase and (iv) their ability to take up nitrite from the surrounding medium. Results are consistent with the hypothesis that nit-3 is the structural gene for nitrate reductase, nit-1 specifies in part a molybdenum containing moiety which is responsible for the nit-3 gene product dimerising to form nitrate reductase, nit-4 and nit-5 are regulator genes whose products are involved in the induction of both nitrate reductase and nitrite reductase and nit-2 codes for a generalised ammonium activated repressor protein. Studies on the induction of nitrate reductase (and its associated activities) and nitrite reductase in wild type, nit-1 and nit-3 in the presence of either nitrate or nitrite suggest that each enzyme may be regulated independently of the other and that nitrite could be true co-inducer of the assimilatory pathway. Nitrite uptake experiments with nit-2, nit-4 and nit-5 strains show that whereas nit-4 and nit-5 are freely permeable to this molecule, it is unable to enter the nit-2 mycelium.

This is a preview of subscription content, log in to check access.


  1. Ackers, G.: A new calibration procedure for gel filtration columns. J. biol. Chem. 242, 3237–3238 (1967)

  2. Antoine, A.D.: Furification and properties of the nitrate reductase isolated from Neurospora crassa mutant nit-3. Kinetics, molecular weight determination and cytochrome involvement. Biochemistry 13, 2289–2294 (1974)

  3. Arst, H.N., Cove, D.J.: Nitrogen metabolite repression in Aspergillus nidulans. Molec. gen. Genet. 126, 111–141 (1973)

  4. Arst, H.N., MacDonald, D.W., Cove D.J.: Molybdate metabolism in Aspergillus nidulans. I. Mutations affecting nitrate reductase and/or xanthine dehydrogenase. Molec. gen. Genet. 108, 129–145 (1970)

  5. Beers, R.F., Sizer, I.W.: A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. biol. Chem. 195, 133–140 (1952)

  6. Cove, D.J.: The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim. biophys. Acta (Amst.) 113, 51–56 (1966)

  7. Cove, D.J.: Control of gene action in Aspergillus nidulans. Proc. roy. Soc. B 176, 267–275 (1970)

  8. Cove, D.J., Coddington, A.: Purifiction of nitrate reductase and cytochrome c reductase from Aspergillus nidulans. Biochim. biophys. Acta (Amst.) 110, 312–318 (1965)

  9. Cove, D.J., Pateman, J.A.: Autoregulation of the synthesis of nitrate reductase in Aspergillus nidulans. J. Bact 97, 1374–1378 (1969)

  10. Garrett, R. H.: The induction of nitrite reductase in Neurospora crassa. Biochim. biophys. Acta (Amst.) 264, 481–489 (1972)

  11. Garrett, R.H., Nason, A.: Further purification and properties of Neurospora nitrate reductase. J. biol. Chem. 244, 2870–2882 (1969)

  12. Kaplan, D., Roth-Bejeramo, N., Lips, S.H.: Nitrate reductase as a product inducible enzyme. Europ. J. Biochem. 49, 393–398 (1974)

  13. Ketchum, P.A., Cambier, H.Y., Frazier, W.A., Madansky, C.H., Nason, A.: In vitro assembly of Neurospora assimilatory nitrate reductase from protein sub-units of a Neurospora mutant and the xanthine oxidising or aldehyde oxidase systems of higher animaly. Proc. nat. Acad. Sci. (Wash.) 66, 1016–1023 (1970)

  14. Kinsky, S.C., McElroy, W.D.: Neurospora, nitrate reductase: The role of phosphate flavine and cytochrome c reductase. Arch. Biochem. Biophys. 73, 466–483 (1958)

  15. Lee, K.-Y., Pan, S.-S., Erickson, R., Nason, A.: Involvement of molybdenum and iron in the in vitro assembly of assimilatory nitrate reductase utilizing Neurospora mutant nit-1. J. biol. Chem. 249, 3941–3952 (1974)

  16. Lowry, O.H., Roseborough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

  17. MacDonald, D.W., Coddington, A.: Properties of the assimilatory nitrate reductase from Asperigillus nidulans. Europ. J. Biochem. 46, 169–178 (1974)

  18. MacDonald, D.W., Cove, D.J., Coddington, A.: Cytochrome c reductases from wild type and mutant strains of Aspergillus nidulans. Molec. gen. Genet. 128, 187–199 (1974)

  19. Martin, R.G., Ames, B.N.: A method for determining the sedimentation behaviour of enzymes. Application to protein mixtures. J. biol. Chem. 236, 1372–1379 (1961)

  20. Nason, A., Antoine, A.D., Ketchum, P.A. Frazier, W.A., Lee, D.K.: Formation of an assimilatory nitrate reductase by in vitro intercistronic complementation in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 65, 133–144 (1970)

  21. Nason, A., Evans, H.J.: Triphospho-pyridine nucleotide nitrate reductase in Neurospora. J. biol. Chem. 202, 655–673 (1953)

  22. Nason, A., Lee, K-Y, Pan, S-S, Ketchum, P.A., Lambert, A. DeVries, J.: in vitro formation of assimilatory reduced nicotinamide adenine dinucleotide phosphate nitrate reductase from a Neurospora mutant and a component of molybdenum enzymes. Proc. nat. Acad. Sci. (Wash.) 68, 3242–3246 (1971)

  23. Nicholas, D.J.D., Nason, A.: Mechanism of action of nitrate reductase from Neurospora. J. biol. Chem. 211, 183–197 (1954)

  24. Pateman, J.A., Rever, B.M., Cove, D.J.: Genetical and biochemical studies of nitrate reduction in Aspergillus nidulans. Biochem. J. 104, 103–111 (1967)

  25. Scarborough, G.A.: Sugar transport in Neurospora crassa. J. biol. Chem. 245, 1694–1698 (1970)

  26. Schloemer, R.H., Garrett, R.H.: Nitrate transport system in Neurospora crassa. J. Bact. 118, 259–269 (1974a)

  27. Schloemer, R.H., Garrett, R.H.: Uptake of nitrite by Neurospora crassa. J. Bact. 118, 270–274 (1974b)

  28. Siegel, L.M., Monty, K.J.: Determination of molecular weights and frictional ratios of proteins in impure systems by the use of gel filtration and density gradient centrifugation: Applications to crude preparations of sulfite and hydroxylamine reductases. Biochim. biophys. Acta (Amst.) 112, 346–362 (1966)

  29. Sorger, G.J.: Simultaneous induction and repression of nitrate reductase and TPNH-cytochrome c reductase in Neurospora crassa. Biochim. biophys. Acta (Amst.) 99, 234–245 (1965)

  30. Sorger, G.J.: Nitrate reductase electron transport systems in mutant and in wild type strains of Neurospora. Biochim. biophys. Acta (Amst.) 118, 484–494 (1966)

  31. Sorger, G.J., Davies, J.: Regulation of nitrate reductase of Neurospora at the level of transcription and translation. Biochem. J. 134, 673–685 (1973)

  32. Sorger, G.J., Debanne, M.T., Davies, J.: Effect of nitrate on the synthesis and decay of nitrate reductase of Neurospora. Biochem. J. 140, 395–403 (1974)

  33. Sorger, G.J., Giles, N.H.: Genetic control of nitrate reductase in Neurospora crassa. Genetics 52, 777–788 (1965)

  34. Subramanian, K.N., Sorger, G.J.: Regulation of nitrate reductase in Neurospora crassa: Stability in vivo. J. Bact. 110, 538–546 (1972)

  35. Vallee, B.L., Hoch, F.L.: Zinc, a component of yeast alcohol dehydrogenase. Proc. nat. Acad. Sci. (Wash.) 41, 327–338 (1955)

  36. Vogel, H.J., Bonner, D.M.: Microbial Genetics Bull. 13, 42 (1956)

  37. Wiley, W.R., Matchett, W.H.: Tryptophan transport in Neurospora crassa. I. Specificity and kinetics. J. Bact. 92, 1698–1705 (1966)

Download references

Author information

Additional information

Communicated by W. Gajewski

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coddington, A. Biochemical studies on the Nit mutants of Neurospora crassa . Molec. Gen. Genet. 145, 195–206 (1976). https://doi.org/10.1007/BF00269594

Download citation


  • Nitrite
  • Molybdenum
  • Benzyl
  • Nitrogen Source
  • Type Strain