Advertisement

Molecular and General Genetics MGG

, Volume 126, Issue 4, pp 291–301 | Cite as

The supX/leu-500 mutations and expression of the leucine operon

  • Lloyd H. GrafJr.
  • R. O. Burns
Article

Summary

A presumed single site mutation designated leu-500, affects both the basal expression and response to the leucine repression signal by the leucine operon of Salmonella typhimurium. The distantly located supX mutation suppresses the leucine auxotrophy imposed by the leu-500 mutation by raising the level of basal expression while maintaining the abnormal regulation. An additional type of suppressor mutation which is closely linked to the leu-500 locus restores essentially normal regulation but maintains the low repressed expression characteristic of the leu-500 strain. The leucine sufficiency of the leu-500 strain with the linked suppressor and the supX leu-500 strains is temperature conditional in that both types require leucine for growth at 42° but not at 37°. These results, which indicate that a single site mutation can simultaneously affect promoter-like and operator-like function, are discussed in terms of DNA superstructure.

Keywords

Leucine Single Site Site Mutation Basal Expression Normal Regulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blattner, F. R., Dahlberg, J. E.: RNA synthesis startpoints in Bacteriophage λ: are the promoter and operator transcribed? Nature (Lond.) New Biol. 237, 227–232 (1972)CrossRefGoogle Scholar
  2. Burns, R. O., Calvo, J., Margolin, P., Umbarger, H. E.: Expression of the leucine operon. J. Bact. 91, 1570–1576 (1966)PubMedGoogle Scholar
  3. Burns, R. O., Umbarger, H. E., Gross, S. R.: The biosynthesis of leucine III. The conversion of α-hydroxy-β-carboxisocaproate to α-ketoiscocaproate. Biochemistry 2, 1053–1058 (1963)CrossRefGoogle Scholar
  4. Burns, R. O., Zarlengo, M. H.: Threonine deaminase from Salmonella typhimurium. J. biol. Chem. 243, 178–185 (1968)PubMedGoogle Scholar
  5. Calvo, J. M., Margolin, P., Umbarger, H. E.: Operator constitutive mutations in the leucine operon of Salmonella typhimurium. Genetics 61, 777–787 (1969)PubMedPubMedCentralGoogle Scholar
  6. Davis, B. D., Mingioli, E. S.: Mutants of Escherichia coli requiring methionine or vitamin B12. J. Bact. 60, 17–28 (1950)PubMedGoogle Scholar
  7. Dubnau, E., Margolin, P.: Suppression of promoter mutations by the pleiotropic supX mutations. Molec. gen. Genet. 117, 91–112 (1972)CrossRefGoogle Scholar
  8. Friedman, S. B., Margolin, P.: Evidence for an altered operator specificity: catabolite repression control of the leucine operon in Salmonella typhimurium. J. Bact. 95, 2263–2269 (1968)PubMedGoogle Scholar
  9. Gierer, A.: Model for DNA and protein interactions and the function of the operator. Nature (Lond.) 212, 1480–1481 (1966)CrossRefGoogle Scholar
  10. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)PubMedPubMedCentralGoogle Scholar
  11. Margolin, P.: Genetic fine structure of the leucine operon. Genetics 48, 441–457 (1963)PubMedPubMedCentralGoogle Scholar
  12. Miller, J., Ippen, K., Scaife, J., Beckwith, J.: The promoter-operator region of the lac operon of Escherichia coli. J. molec. Biol. 38, 413–420 (1968)CrossRefGoogle Scholar
  13. Mukai, F. H., Margolin, P.: Analysis of unlinked suppressors of an 0° mutation in Salmonella. Proc. nat. Acad. Sci. (Wash.) 50, 140–148 (1963)CrossRefGoogle Scholar
  14. Novick, A., Szilard, L.: Description of the chemostat. Science 112, 715–716 (1950a)CrossRefGoogle Scholar
  15. Novick, A., Szilard, L.: Experiments with the chemostat on spontaneous mutations of bacteria. Proc. nat. Acad. Sci. (Wash.) 36, 708–719 (1950b)CrossRefGoogle Scholar
  16. Novick, R. P., Maas, W. K.: Control by endogenously synthesized arginine of the formation of ornithine transcarbamylase in Escherichia coli. J. Bact. 81, 236–240 (1961)PubMedGoogle Scholar
  17. Parsons, S. J., Burns, R. O.: Purification and properties of β-isopropylmalate dehydrogenase. J. Biol. Chem. 244, 996–1003 (1969)PubMedGoogle Scholar
  18. Sadler, J. R., Smith, T. F.: Mapping of the lactose operator. J. molec. Biol. 62, 139–169 (1971)CrossRefGoogle Scholar
  19. Sobell, H. M.: Symmetry in protein-nucleic acid interaction and its genetic implications. Advances in genetics (E. Caspari, ed.) vol. 17. New York: Academic Press, Inc. (in press)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Lloyd H. GrafJr.
    • 1
  • R. O. Burns
    • 1
  1. 1.Department of Microbiology and ImmunologyDuke University, School of MedicineDurhamUSA

Personalised recommendations