Advertisement

Molecular and General Genetics MGG

, Volume 142, Issue 1, pp 57–66 | Cite as

Gene expression of bacteriophage SPP1

II. Regulatory aspects
  • Helmut Esche
Article
  • 34 Downloads

Summary

The expression of late SPP1 genes depends on preceding SPP1 DNA replication. This is shown in nonpermissive infection with a mutant defective in DNA replication and after inhibition of DNA synthesis by HPUra. The potential for host gene expression is not significantly influenced by SPP1 infection, as evidenced by the continuation of host protein synthesis and the inducibility of glycerolphosphate dehydrogenase after infection. The involvement of a positive control element in the regulation of SPP1 gene expression is deduced from the observation that chloramphenicol prevents the synthesis of the only class of mRNA which is transcribed from the L-strand.

Keywords

Gene Expression Positive Control Protein Synthesis Chloramphenicol Host Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adesnik, M. Levinthal, C.: RNA metabolism in T4-infected Escherichia coli. J. molec. Biol. 48, 187–208 (1970)CrossRefGoogle Scholar
  2. Bautz, E. K. F., Bautz, F. A., Dunn, J. J.: E. coli σ factor: a positive control element in phage T4 development: Nature (Lond.) 223, 1022–1024 (1969)CrossRefGoogle Scholar
  3. Bazill, G. W., Gross, J. D.: Mutagenic DNA polymerase in B. subtilis. Nature (Lond.) (New Biol.) 243, 241–243 (1973)CrossRefGoogle Scholar
  4. Brown, N.: 6-(p-Hydroxyphenyl-azo)-urazil: a selective inhibitor of host DNA replication in phage-infected Bacillus subtilis. Proc. nat. Acad. Sci. (Wash.) 67, 1454–1461 (1970)CrossRefGoogle Scholar
  5. Brown, N.: Inhibition of bacterial DNA replication by 6-(p-Hydroxyphenyl-azo)-uracil: differential effect on repair and semiconservative synthesis in Bacillus subtilis. J. molec. Biol. 59, 1–16 (1971)CrossRefGoogle Scholar
  6. Brown, N., Wisseman, C. L., Matsushita, T.: Inhibition of bacterial DNA replication by 6-(p-Hydroxyphenylazo)uracil. Nature (Lond.) (New Biol.) 237, 72–74 (1972)CrossRefGoogle Scholar
  7. Cozzarelli, N. R., Low, R. L.: Mutational alteration of Bacillus subtilis DNA polymerase III to Hydroxy-Phenylazo-pyrimidine resistance: Polymerase III is necessary for DNA replication. Biochem. biophys. Res. Commun. 51, 151–157 (1973)CrossRefGoogle Scholar
  8. Epstein, R. H., Bolle, A., Steinberg, C. M., Kellenberger, E., Boy de la Tour, E., Chevalley, R., Edgar, R. S., Susman, M., Denhardt, G. H., Lielausis, A.: Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spr. Harb. Symp. quant. biol. 28, 375–394 (1963)CrossRefGoogle Scholar
  9. Esche, H.: Virusspezifische Proteinsynthese nach Infektion von B. subtilis mit SPP1. Dissertation, Fachbereich Biologie, Freie Universität Berlin (1974)Google Scholar
  10. Esche, H., Schweiger, M., Trautner, T. A.: Gene expression of bacteriophage SPP1: I. Phage directed protein synthesis. Molec. gen. Genet. 142, 45–55 (1975)PubMedGoogle Scholar
  11. Esche, H., Spatz, H. Ch.: Asymmetric transcription of SPP1 in vivo. Molec. gen. Genet. 124, 57–63 (1973)CrossRefGoogle Scholar
  12. Gage, L. P., Geiduschek, E. P.: RNA synthesis during bacteriophage SPO1 development. II. Sense modulations and prerequisites of the transcription program. Virology 44, 200–210 (1971)CrossRefGoogle Scholar
  13. Guha, A., Szybalski, W., Salser, W., Bolle, A., Geiduschek, E. P., Pulitizer, J. F.: Controls and polarity of transcription during bacteriophage T4 development. J. molec. Biol. 59, 329–349 (1971)CrossRefGoogle Scholar
  14. Hosoda, J., Levinthal, C.: Protein synthesis by Escherichia coli infected with bacteriophage T4D. Virology 34, 709–727 (1968)CrossRefGoogle Scholar
  15. Kahmann, R.: Das Verhalten von SPP1 DNA nach Transfektion von B. subtilis. Dissertation, Fachbereich Biologie, Freie Universität Berlin (1974)Google Scholar
  16. Lin, E. C. C., Koch, J. P., Chused, T. M., Jorgensen, S. E.: Utilization of L-α-glycerophosphate by Escherichia coli without hydrolysis. Proc. nat. Acad. Sci. (Wash.) 48, 2145–2150 (1962)CrossRefGoogle Scholar
  17. Marcus, M., Newlon, M. C.: Control of DNA synthesis in B. subtilis by phage øe. Virology 44, 83–93 (1971)CrossRefGoogle Scholar
  18. Milanesi, G., Cassani, G.: Transcription after bacteriophage SPP1 infection in B. subtilis. J. Virol. 10, 187–192 (1972)PubMedPubMedCentralGoogle Scholar
  19. Nygaard, A. P., Hall, B. D.: A method for the detection of RNA-DNA complexes. Biochem. biophys. Res. Commun. 12, 98–104 (1963)CrossRefGoogle Scholar
  20. Price, A. R., Fogt, S. M.: Resistance of bacteriophage PBS2 infection to 6-(p-Hydroxyphenylazo)-uracil, an inhibitor of Bacillus subtilis deoxyribonucleic acid synthesis. J. Virol. 11, 338–340 (1973)PubMedPubMedCentralGoogle Scholar
  21. Riva, S., Cascino, S., Geiduschek, E. P.: Coupling of late transcription to viral replication in bacteriophage T4 development. J. molec. Biol. 54, 85–102 (1970)CrossRefGoogle Scholar
  22. Rutberg, L., Armentrout, R. W., Jonasson, J.: Unrelatedness of temperate Bacillus subtilis bacteriophages SPO2 and ø 105. J. Virol. 9, 732–737 (1972)PubMedPubMedCentralGoogle Scholar
  23. Schachtele, C. F., Reilly, B. E., Delain, C. V., Whittigton, M. O., Anderson, D. L.: Selective replication of bacteriophage ø29 deoxyribonucleic acid in 6-(p-Hydroxyphenylazo)-uraciltreated Bacillus subtilis. J. Virol. 11, 153–155 (1973)PubMedPubMedCentralGoogle Scholar
  24. Schlaeger, E. J.: Das Ausmaß der DNA-Reparatursynthese während der Primär-Rekombination bei Transfektion mit Bacillus subtilis. Dissertation, Fakultät für Biologie, Albert-Ludwigs-Universität, Freiburg (1973)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Helmut Esche
    • 1
  1. 1.Abt. TrautnerMax-Planck-Institut für molekulare GenetikBerlinGermany

Personalised recommendations