Advertisement

Molecular and General Genetics MGG

, Volume 135, Issue 3, pp 203–212 | Cite as

Studies on the positive regulatory gene, GAL4, in regulation of galactose catabolic enzymes in Saccharomyces cerevisiae

  • Amar J. S. Klar
  • Harlyn O. Halvorson
Article

Summary

Studies were undertaken to elucidate the role of the GAL4 locus in regulating the galactose catabolic enzymes in Saccharomyces cerevisiae. The GAL4 locus has been proposed to have a regulatory function since GAL4 mutants are pleiotropic, lacking epimerase, galactokinase, transferase and galactose permease activities. This pleiotropic effect could be explained if the GAL4 gene codes for a peptide required for above enzyme activities. To study if the GAL4 gene codes for a structural component of the above enzymes, a temperature sensitive mutation mapping close to or within the GAL4 gene (gal4-1ts) was isolated. The results suggest that the GAL4 locus does not code for a polypeptide common to the transferase, epimerase, galactokinase, and permease enzymes since these enzymes extracted from the gal4-1ts mutant did not differ qualitatively in thermolability and temperature optima from those of the wild-type. It was found that in the gal4-1ts mutant the synthesis of the epimerase is temperature sensitive and that the GAL4 gene product does not have any effect on the in vivo stability of epimerase.

Keywords

Enzyme Peptide Polypeptide Galactose Saccharomyces Cerevisiae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burkl, G., Castroph, H., Schweizer, E.: Mapping of a complex gene locus coding for part of the Saccharomyces cerevisiae fatty acid synthetase multienzyme complex. Mol. gen. Genet. 119, 315–322 (1972)PubMedGoogle Scholar
  2. Douglas, H. C., Condi, F.: The genetic control of galactose utilization in Saccharomyes. J. Bact. 68, 662–670 (1954)PubMedGoogle Scholar
  3. Douglas, H. C., Hawthorne, D. C.: Enzymatic expression and genetic linkage of genes controlling galactose utilization in Saccharomyces. Genetics 49, 837–844 (1964)PubMedPubMedCentralGoogle Scholar
  4. Douglas, H. C., Hawthorne, D. C.: Regulation of genes controlling synthesis of the galactose pathway enzymes in yeast. Genetics 54, 911–916 (1966)PubMedPubMedCentralGoogle Scholar
  5. Douglas, H. C., Hawthorne, D. C.: Uninducible mutants in the gal i locus of Saccharomyces cerevisiae. J. Bact. 109, 1139–1143 (1972)PubMedGoogle Scholar
  6. Gielow, L., Largen, M., Englesberg, E.: Initiator constitutive mutants of the L-arabinose operon (OIBAD) of Escherichia coli B/r. Genetics 69, 289–302 (1971)PubMedPubMedCentralGoogle Scholar
  7. Hawthorne, D. C., Friis, J.: Osmotic-remedial mutants. A new classification for nutritional mutants in yeast. Genetics 50, 829–839 (1970)Google Scholar
  8. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the induced synthesis of proteins. J. molec. Biol. 3, 318–356 (1961)CrossRefGoogle Scholar
  9. Khan, N. A., Eaton, N. R.: Genetic control of maltase formation in yeast. I. Strains producing high and low basal levels of enzyme. Molec. gen. Genet. 112, 317–322 (1971)CrossRefGoogle Scholar
  10. Marzluf, G. A., Metzenberg, R. L.: Positive control the cys-3 locus in regulation of sulfur metabolism in Neurospora. J. molec. Biol. 33, 423–437 (1968)CrossRefGoogle Scholar
  11. Maxwell, E. S., Kurahashi, K., Kalcar, H. M.: Enzymes of the Leloir pathway. In: Methods in enzymology (S. P. Colowick and N. O. Kaplan, eds.), vol. V, p. 174–189. New York: Academic Press 1962Google Scholar
  12. Miller, J. H., Ippen, K., Scaife, J. G., Beckwith, J. R.: The promotor-operator region of the lac operon of Escherichia coli. J. molec. Biol. 38, 413–420 (1968)CrossRefGoogle Scholar
  13. Mortimer, R. K., Hawthorne, D. C.: Genetic mapping in Saccharomyces. Genetics 53 165–173 (1966)PubMedPubMedCentralGoogle Scholar
  14. Schatz, G., Groot, G. S. P., Mason, T., Rouslin, W., Wharton, D. C., Saltzgaber, J.: Biogenesis of mitochondrial inner embranes in Baker's yeast. Fed. Proc. 31, 21–29 (1972)PubMedGoogle Scholar
  15. Sorger, G. J.: Nitrate reductase electron transport systems in mutant and in wild-type strains of Neurospora. Biochim. biophys. Acta (Amst.) 118, 484–494 (1966)CrossRefGoogle Scholar
  16. Valone, J. A., Jr., Case, M. E., Giles, N. H.: Constitutive mutants in a regulatory gene exerting positive control of quinic acid catabolism in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 68, 1555–1559 (1971)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Amar J. S. Klar
    • 1
  • Harlyn O. Halvorson
    • 1
  1. 1.Department of Biology and Rosenstiel Basic Medical Sciences Research CenterBrandeis UniversityWaltham

Personalised recommendations