Molecular and General Genetics MGG

, Volume 135, Issue 3, pp 191–202 | Cite as

Pleiotropic effects of ribosomal protein S4 studied in Escherichia coli mutants

  • M. Olsson
  • L. Isaksson
  • C. G. Kurland


A temperature sensitive mutant of Escherichia coli was found to have two mutational alterations of its ribosomes: one of these was a streptomycin dependent mutation and the other was a suppressor alteration of S4, with a marked structural change. The altered form of S4 was studied in a strain that was constructed so that this alteration was the only one effecting the structure of the ribosome. Here, it was shown that the mutant form of S4 cause a temperature sensitive defect in the assembly of 30S subunits in vivo which is reflected in the inability of this mutant to properly process ribosomal RNA at the restrictive temperatures. An analysis of both transductants and revertants of this mutant show that the suppression of the streptomycin dependence phenotype, temperature sensitivity, and a defect in RNA processing all have their origin in a single mutational event effecting the structural gene for S4.


Escherichia Coli Streptomycin Ribosomal Protein Mutational Event Pleiotropic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adesnik, M., Levinthal, C.: Synthesis and maturation of ribosomal RNA in Escherichia coli. J. molec. Biol. 46, 281–303 (1969)CrossRefGoogle Scholar
  2. Birge, E. A., Kurland, C. G.: Altered ribosomal protein in streptomycin-dependent Escherichia coli. Science 166, 1282 (1969)CrossRefGoogle Scholar
  3. Birge, E. A., Kurland, C. G.: Reversion of a streptomycin-dependent strain of Escherichia coli. Molec. gen. Genet. 109, 356–369 (1970)CrossRefGoogle Scholar
  4. Brownstein, B. L., Lewandowski, L. J.: A mutation supressing streptomycin dependence. J. molec. Biol. 25, 99–109 (1967)CrossRefGoogle Scholar
  5. Dahlberg, A. E., Peacock, A. C.: Studies of 16 and 23S ribosomal RNA of Escherichia coli using composite gel electrophoresis. J. molec. Biol. 55, 61–74 (1971)CrossRefGoogle Scholar
  6. Daja-Grosjean, L., Garrett, R. A., Pongs, O., Stöffler, G., Wittmann, H. G.: Properties of the interaction of ribosomal protein S4 and 16S RNA in Escherichia coli revertants from streptomycin dependence to independence. Molec. gen. Genet. 119, 277–286 (1972)CrossRefGoogle Scholar
  7. Deusser, E., Stöffler, G., Wittmann, H. G., Apirion, G.: Altered S4 Proteins in Escherichia coli revertants from streptomycin dependence to independence. Molec. gen. Genet. 109, 298–302 (1970)CrossRefGoogle Scholar
  8. Feunteun, J., Monier, R., Vola, C., Rosset, R.: Ribosomal Assembly defective mutants of Escherichia coli. Nucleic Acids Research 1, 149–169 (1974)CrossRefGoogle Scholar
  9. Feunteun, J., Rosset, R., Ehresmann, C., Stiegler, P., Fellner, P.: Abnormal maturation of precursor 16S RNA in a ribosomal assembly defective mutant of E. coli. Nucleic Acids Research 1, 141–148 (1974)CrossRefGoogle Scholar
  10. Green, M., Kurland, C. G.: Mutant ribosomal protein with defective RNA binding site. Nature (Lond.) New Biol. 234, 273–275 (1971)CrossRefGoogle Scholar
  11. Hardy, S. J. S., Kurland, C. G., Voynow, P., Mora, G.: The ribosomal proteins of Escherichia coli. I. Purification of the 30S ribosomal proteins. Biochemistry 8, 2897–2905 (1969)CrossRefGoogle Scholar
  12. Hasenbank, R., Guthrie, C., Stöffler, G., Wittmann, H. G., Rosen, L., Apirion, D.: Electrophoretic and immunological studies on ribosomal proteins of 100 Escherichia coli revertants from streptomycin dependence. Molec. gen. Genet. 127, 1–18 (1973)CrossRefGoogle Scholar
  13. Hashimoto, K.: Streptomycin resistance in Escherichia coli analyced by transduction. Genetics 45, 49 (1960)PubMedPubMedCentralGoogle Scholar
  14. Holmes, D. S., Bonner, J.: Preparation, molecular weight, base composition and secondary structure of giant nuclear ribonucleic acid. Biochemistry 12, 2330–2338 (1973)CrossRefGoogle Scholar
  15. Kaltschmidt, E., Wittmann, H. G.: Ribosomal proteins. VII. Two-dimensional polyacrylamide gel electrophoresis for fingerprinting of ribosomal proteins. Analyt. Biochem. 36, 401–412 (1970)CrossRefGoogle Scholar
  16. Kreider, G., Brownstein, B. L.: A mutation suppressing streptomycin dependence. II. An altered protein in the 30S ribosomal subunit. J. molec. Biol. 61, 135–142 (1971)CrossRefGoogle Scholar
  17. Kreider, G., Brownstein, B. L.: Ribosomal proteins involved in the suppression of streptomycin dependence in Escherichia coli. J. Bact. 109, 780–785 (1972)PubMedGoogle Scholar
  18. Kurland, C. G.: The requirements for special sRNA binding by ribosomes. J. molec. Biol. 18, 90–108 (1966)CrossRefGoogle Scholar
  19. Likover, T. E., Kurland, C. G.: Ribosomes from a streptomycin-dependent strain of Escherichia coli. J. molec. Biol. 25, 497–504 (1967)CrossRefGoogle Scholar
  20. Lindahl, L.: Two new ribosomal precursor particles in E. coli. Nature (Lond.) New Biol. 243, 170–172 (1973)CrossRefGoogle Scholar
  21. Lutter, L. C., Bode, U., Kurland, C. G., Stöffler, G.: Ribosomal protein neighborhoods. III. Cooperativity of assembly. Molec. gen. Genet. 129, 167–176 (1974)CrossRefGoogle Scholar
  22. Nanninga, N., Garrett, R. A., Stöffler, G., Klotz, G.: Ribosomal proteins. XXXVIII. Electron microscopy of ribosomal proteins S4-16S RNA complexes of Escherichia coli. Mol. gen. Genet. 119, 174 (1972)CrossRefGoogle Scholar
  23. Nashimoto, H., Nomura, M.: Structure and function of bacterial ribosomes. XI. Dependence of 50S ribosomal assembly on simultaneous assembly of 30S subunits. Proc. nat. Acad. Sci. (Wash.) 67, 1440–1447 (1970)CrossRefGoogle Scholar
  24. Nikolaev, N., Birge, C. H., Gotoh, S., Schlessinger, D.: Primary processing of high molecular weight pre-ribosomal RNA in Escherichia coli and cells. (In press)Google Scholar
  25. Peacock, A. C., Dingman, C. W.: Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry 7, 668–674 (1968)CrossRefGoogle Scholar
  26. Schaup, H. W., Green, M., Kurland, C. G.: Molecular interactions of ribosomal components. II. Site-specific complex formation between 30S proteins and ribosomal RNA. Molec. gen. Genet. 112, 1–8 (1971)CrossRefGoogle Scholar
  27. Schaup, H. W., Kurland, C. G.: Molecular interactions of ribosomal components. III. Isolation of the RNA binding site for a ribosomal protein. Molec. gen. Genet. 114, 350–357 (1972)CrossRefGoogle Scholar
  28. Stöffler, G., Deusser, E., Wittmann, H. G., Apirion, D.: Ribosomal proteins. XIX. Altered S5 ribosomal proteins in an Escherichia coli revertant from streptomycin dependence to independence. Molec. gen. Genet. 111, 334–341 (1971)CrossRefGoogle Scholar
  29. Wireman, J., Sypherd, P. S.: Properties of 30S ribosomal particles reconstituted from precursor 16S ribonucleic acid. Biochemistry 13, 1215–1220 (1974)CrossRefGoogle Scholar
  30. Zimmermann, R. A., Muto, A., Fellner, P., Ehresmann, C., Branlant, C.: Location of ribosomal protein binding sites on 16S ribosomal RNA. Proc. nat. Acad. Sci. (Wash.) 69, 1282 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • M. Olsson
    • 1
  • L. Isaksson
    • 1
  • C. G. Kurland
    • 1
  1. 1.Wallenberg LaboratoryUniversity of UppsalaUppsalaSweden

Personalised recommendations