Advertisement

Molecular and General Genetics MGG

, Volume 109, Issue 4, pp 356–369 | Cite as

Reversion of a streptomycin-dependent strain ofEscherichia coli

  • E. A. Birge
  • C. G. Kuriland
Article

Summary

A streptomycin dependent, spectinomycin resistant mutant ofEscherichia coli was used to select spontaneous phenotypic revertants to non-dependence on streptomycin. The ribosomes from one such revertant, which is inhibited by both streptomycin and spectinomycin, were analyzedin vitro. The altered protein responsible for the suppression of the streptomycin dependent phenotype was identified; this protein is 30S-10. The genetic locus for this mutation is a newly identified locus and it has been positioned close to thestr locus. The identification of the altered component responsible for the suppression of the spectinomycin resistant phenotype may be the same as that for the streptomycin dependent phenotype, but this is unproven.

Keywords

Streptomycin Genetic Locus Resistant Phenotype Spectinomycin Altered Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E. H.: Growth requirements of virus resistant mutants ofEscherichia coli strainB. Proc. nat. Acad. Sci. (Wash.)32, 120 (1946).CrossRefGoogle Scholar
  2. Apirion, D., Schlessinger, D., Phillips, S., Sypherd, P.:Escherichia coli: Reversion from streptomycin dependence, a mutation in a specific 30S ribosomal protein. J. molec. Biol.43, 327 (1969).CrossRefGoogle Scholar
  3. Arber, W.: Transduction of chromosomal genes and episomes inEscherichia coli. Virology11, 273 (1960).CrossRefGoogle Scholar
  4. Birge, E. A., Craven, G. R., Hardy, S. J. S., Kurland, C. G., Voynow, P.: Structural determinant of a ribosomal protein: K locus. Science164, 1285 (1969).CrossRefGoogle Scholar
  5. —, Kurland, C. G.: Altered ribosomal protein in streptomycin-dependentEscherichia coli. Science166, 1282 (1969).CrossRefGoogle Scholar
  6. Bollen, A., Davies, J., Ozaki, M., Mizushima, S.: Identification of the ribosomal protein conferring sensitivity to the antibiotic spectinomycin inEscherichia coli. Science165, 85 (1969).CrossRefGoogle Scholar
  7. Brownstein, B. L., Lewandowski, L. J.: A mutation suppressing streptomycin dependence. I. An effect on ribosome function. J. molec. Biol.25, 99 (1967).CrossRefGoogle Scholar
  8. Demerec, M., Adelberg, E. A., Clark, A. J., Hartman, P. E.: A proposal for a uniform nomenclature in bacterial genetics. Genetics54, 61 (1966).PubMedPubMedCentralGoogle Scholar
  9. Gesteland, R. F., Boedtker, H.: Some physical properties of bacteriophage R17 and its ribonucleic acid. J. molec. Biol.8, 496 (1964).CrossRefGoogle Scholar
  10. Ghosh, H. P., Soll, D., Khorana, H. G.: Studies on polynucleotides. LXVII. Initiation of protein synthesisin vitro as studied by using ribopolynucleotides with repeating nucleotide sequences as messengers. J molec. Biol.25, 275 (1967).CrossRefGoogle Scholar
  11. Gorini, L., Kataja, E.: Streptomycin-induced over-suppression inE. coli. Proc. nat. Acad. Sci. (Wash.)51, 995 (1964).CrossRefGoogle Scholar
  12. Hardy, S. J. S., Kurland, C. G., Voynow, P., Mora, G.: The ribosomal proteins ofEscherichia coli. I. Purification of the 30S ribosomal proteins. Biochemistry8, 2897 (1969).CrossRefGoogle Scholar
  13. Hashimoto, K.: Streptomycin resistance inEscherichia coli analyzed by transduction. Genetics45, 49 (1960).PubMedPubMedCentralGoogle Scholar
  14. Kurland, C. G.: The requirements for specific sRNA binding by ribosomes. J. molec. Biol.18, 90 (1966).CrossRefGoogle Scholar
  15. Leboy, P. S., Cox, E. C., Flaks, J. G.: The chromosomal site specifying a ribosomal protein inEscherichia coli. Proc. nat. Acad. Sci. (Wash.)52, 1367 (1964).CrossRefGoogle Scholar
  16. Lederberg, J., Lederberg, E. M.: Replica plating and indirect selection of bacterial mutants. J. Bact.63, 399 (1952).PubMedGoogle Scholar
  17. Levinthal, C., Signer, E. R., Fetherolf, K.: Reactivation and hybridization of reduced alkaline phosphatase. Proc. nat. Acad. Sci. (Wash.)48, 1230 (1962).CrossRefGoogle Scholar
  18. Likover, T. E., Kurland, C. G.: Ribosomes from a streptomycin dependent strain ofE. coli. J. molec. Biol.25, 497 (1967a).CrossRefGoogle Scholar
  19. —: The contribution of DNA to translation errors induced by streptomycinin vitro. Proc. nat. Acad. Sci. (Wash.)58, 2385 (1967b).CrossRefGoogle Scholar
  20. Mayuga, C., Meier, D., Wang, T.:Escherichia coli: the K12 ribosomal protein and the streptomycin region of the chromosome. Biochem. biophys. Res. Commun.33, 203 (1968).CrossRefGoogle Scholar
  21. Mizushima, S., Nomura, M.: Assembly mapping of 30S ribosomal proteins fromE. coli. Nature (Lond.)226, 1214 (1970b).CrossRefGoogle Scholar
  22. Nomura, M., Mizushima, S., Ozaki, M., Traub, P., Lowry, C. V.: Structure and function of ribosomes and their molecular components. Cold Spr. Harb. Symp. quant. Biol.34, 49 (1969).CrossRefGoogle Scholar
  23. Otaba, E., Itoh, T., Osawa, S.: Ribosomal proteins of bacterials cells: strain- and species-specificity. J. molec. Biol.33, 93 (1968).CrossRefGoogle Scholar
  24. Ozaki, M., Mizushima, S., Nomura, M.: Identification and functional chracterization of the protein controlled by the streptomycin-resistant locus inEscherichia coli. Nature (Lond.)222, 333 (1969).CrossRefGoogle Scholar
  25. Shaup, H. W., Green, M., Kurland, C. G.: Molecular interaction of ribosomal components. I. Identification of RNA binding sites for individual 30S ribosomal proteins. Manuscript submitted to this journal (1970).Google Scholar
  26. Sypherd, P.: Amino acid differences in a 30S ribosomal protein from two strains ofEscherichia coli. J. Bact.99, 379 (1969).PubMedGoogle Scholar
  27. Sypherd, P. S., O'Neill, D. M., Taylor, M. M.: The chemical and genetic structure of bacterial ribosomes. Cold Spr. Harb. symp. quant. Biol.34, 77 (1969).CrossRefGoogle Scholar
  28. Traub, P., Nomura, M.: Structure and function ofE. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc. nat. Acad. Sci. (Wash.)59, 777 (1968).CrossRefGoogle Scholar
  29. —, Soll, D., Nomura, M.: Structure and function ofEscherichia coli ribosomes. II. Translational fidelity and efficiency in protein synthesis of a protein deficient subribosomal particle. J. molec. Biol.34, 595 (1968).CrossRefGoogle Scholar
  30. Weisblum, B., Davies, J.: Antibiotic inhibitors of the bacterial ribosome. Bact. Rev.32, 493 (1968).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • E. A. Birge
    • 1
  • C. G. Kuriland
    • 1
    • 2
  1. 1.Department of ZoologyUniversity of WisconsinMadisonUSA
  2. 2.The Wallenberg LaboratoryUniversity of UppsalaUppsalaSweden

Personalised recommendations