Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rifampicin supersensitivity of rho strains of E. coli, and suppression by sur mutation


Escherichia coli strains with mutations rho-115, rho-ts15, rho-101 (psu-1) or rho-102 (psu-2) are more sensitive (“supersensitive”) to rifampicin than isogenic parent strains, as measured by growth rate in broth and colony forming efficiency on solid media with 5, 10, or 20 μg of rifampicin per ml. There is no change in sensitivity of rho mutants to the antibiotics penicillin, erythromycin, chloramphenicol, or the detergent desoxycholate. The rho-101 or rho-102 mutations confer rifampicin supersensitivity at 32°C but not 42°C. Mutants of a rho-115 strain that have lost polarity suppression can be isolated by selection for rifampicin resistance. This phenotype, Sur, is not due to reversion of the original rho gene mutation but to a second mutation perhaps in the gene for rho protein or the gene for the β subunit of RNA polymerase. One class of Sur mutation, occurring in rho-115 cells isolated as resistant to 20 μg of rifampicin per ml, is co-transducible with the marker ilv, and the gene order is rbs-ilv-sur-38. A model suggested by this map position is that the mutations rho-115 and sur-38 define the domain of rho protein which interacts with the β subunit of RNA polymerase.

This is a preview of subscription content, log in to check access.


  1. Alpers, D.H., Appel, S.H., Tomkins, G.M.: A spectrophotometric assay for thiogalactoside transacetylase. J. Biol. Chem. 240, 10–13 (1965)

  2. Bachmann, B.J., Low, K.B., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K-12. Bact. Rev. 40, 116–167 (1976)

  3. Bertrand, K., Korn, L., Lee, F., Platt, T., Squires, C.L., Squires, C., Yanofsky, C.: New features of the structure and regulation of the tryptophan operon of E. coli. Science 189, 22–26 (1975)

  4. Das, A., Court, D., Adhya, S.: Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor rho. Proc. Natl. Acad. Sci. U.S.A. 73, 1959–1963 (1976)

  5. Epp, C., Pearson, M.L.: Association of bacteriophage lambda N gene protein with E. coli RNA polymerase. In: RNA polymerase (R. Losick and M. Chamberlin, eds.), pp. 677–691. New York: Cold Spring Harbor Laboratory 1976

  6. Fiandt, M., Szybalski, W., Malamy, M.H.: Polar mutations in lac, gal and phage λ consist of a few IS-DNA sequences inserted with either orientation. Mol. Gen. Genet. 119, 223–231 (1972)

  7. Georgopoulos, C.P.: Bacterial mutants in which the gene N fuction of bacteriophage lambda is blocked have an altered RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 68, 2977–2981 (1971)

  8. Ghysen, A., Pironio, M.: Relationship between the N function of bacteriophage λ and host RNA polymerase. J. Mol. Biol. 65, 259–272 (1972)

  9. Goldberg, A.R., Hurwitz, J.: Studies on termination of in vitro ribonucleic acid synthesis by rho factor. J. Biol. Chem. 247, 5637–5645 (1972)

  10. Gross, C., Engbaek, F., Flammang, T., Burgess, R.: Rapid micro-method for the purification of Escherichia coli ribonucleic acid polymerase and the preparation of bacterial extracts active in ribonucleic acid synthesis. J. Bact. 128, 382–389 (1976)

  11. Guarente, L.P., Mitchell, D.H., Beckwith, J.: Transcription termination at the end of the tryptophan operon. J. Mol. Biol. 112, 423–436 (1977)

  12. Guterman, S.K.: Colicin B: mode of action and inhibition by enterochelin. J. Bact. 114, 1217–1224 (1973)

  13. Heil, A., Zillig, W.: Reconstitution of bacterial DNA-dependent RNA polymerase from isolated subunits as a tool for the elucidation of the role of the subunits in transcription. FEBS Letters 11, 165–168 (1970)

  14. Howard, B.H., deCrombrugghe, B.: ATPase activity required for termination of transcription by the Escherichia coli protein factor P. J. Biol. Chem. 251, 2520–2524 (1976)

  15. Howard, B.H., deCrombrugghe, B., Rosenberg, M.: Transcription in vitro of bacteriophage lambda 4s RNA: studies on termination and rho protein. Nucleic Acid Res. 4, 827–842 (1977)

  16. Kiefer, M., Neff, N., Chamberlin, M.J.: Transcriptional termination at the end of the early region of bacteriophages T3 and T7 is not affected by polarity suppressors. J. Virol. 22, 548–552 (1977)

  17. Korn, L.J., Yanofsky, C.: Polarity suppressors increase expression of the wild-type tryptophan operon of Escherichia coli. J. Mol. Biol. 103, 395–409 (1976)

  18. Korn, L.J., Yanofsky, C.: Polarity suppressors defective in transcription termination at the attenuator of the tryptophan operon of Escherichia coli have altered rho factor. J. Mol. Biol. 106, 231–241 (1976)

  19. Lathe, R., LeCocq, J.P.: The firA gene, a locus involved in the expression of rifampicin resistance in Escherichia coli II. Characterization of bacterial proteins coded by λ firA transducing phages. Mol. Gen. Genet. 154, 53–60 (1977)

  20. Lowery, C., Richardson, J.P.: Characterization of the nucleoside triphosphate phosphohydrolase (ATPase) activity of RNA synthesis termination factor ρ. I. Enzymatic properties and effects of inhibitors. J. Biol. Chem. 252, 1375–1380 (1977)

  21. Lowery-Goldhammer, C., Richardson, J.: An RNA-dependent nucleoside triphosphate phosphohydrolase (ATPase) associated with rho termination factor. Proc. Natl. Acad. Sci. U.S.A. 21, 2003–2007 (1974)

  22. Malamy, M.: Frameshift mutations in the lactose operon of E. coli. Cold Spring Harbor Symp. Quant. Biol. 31, 189–201 (1966)

  23. Millette, R.L., Trotter, C.D., Herrlich, P., Schweiger, M.: In vitro synthesis, termination and release of active messenger RNA. Cold Spring Harbor Symp. Quant. Biol. 35, 135–142 (1970)

  24. Minkley, E.G., Pribnow, D.: Transcription of the early region of bacteriophage T7: Selective initiation with dinucleotides. J. Mol. Biol. 77, 255–277 (1973)

  25. Nakamura, Y., Yura, T.: Induction of sigma factor synthesis in Escherichia coli by the N gene product of bacteriophage lambda. Proc. Natl. Acad. Sci. U.S.A. 73, 4405–4409 (1976)

  26. Quay, S.C., Oxender, D.L.: Regulation of amino acid transport in Escherichia coli by transcription termination factor rho. J. Bact. 130, 1024–1029 (1977)

  27. Rabussay, D., Zillig, W.: A rifampicin resistant RNA polymerase from E. coli altered in the β-subunit. FEBS Letters 5, 104–106 (1969)

  28. Reyes, O., Gottesman, M., Adhya, S.: Suppression of polarity of insertion mutations in the gal operon and N mutations in bacteriophage lambda. J. Bact. 126, 1108–1112 (1976)

  29. Roberts, J.: Termination factor for RNA polymerase. Nature 224, 1168–1174 (1969)

  30. Roberts, J.W.: Transcription termination and its control in E.coli. In: RNA polymerase (R. Losick and M. Chamberlin, eds.), pp. 247–271. New York: Cold Spring Harbor Laboratory 1976

  31. Schäfer, R., Zillig, W.: Kappa, a novel factor for the arrest of transcription in vitro by DNA-dependent RNA polymerase from E. coli at specific sites of natural templates. Eur. J. Biochem. 33, 201–206 (1973)

  32. Thomas, C.A., Abelson, J.: The isolation and characterization of DNA from bacteriophage. In: Procedures in nucleic acid research (G.L. Cantoni and D.R. Davies eds.), Vol. 1, pp. 553–561. New York: Harper and Row 1965

  33. Yang, H.-L., Zubay, G.: A possible termination factor for transcription in Escherichia coli. Biochem. Biophys. Res. Commun. 56, 725–731 (1974)

  34. Young, B.S., Guterman, S.K., Wright, A.: Temperature-sensitive RNA polymerase mutant of Salmonella typhimurium with a defect in the β′ subunit. J. Bact. 127, 1292–1297 (1976)

Download references

Author information

Correspondence to Sonia K. Guterman.

Additional information

Communicated by E. Bautz

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guterman, S.K., Howitt, C.L. Rifampicin supersensitivity of rho strains of E. coli, and suppression by sur mutation. Molec. Gen. Genet. 169, 27–34 (1979).

Download citation


  • Erythromycin
  • Rifampicin
  • Chloramphenicol
  • Parent Strain
  • Solid Medium