Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Basic for slow growth on non-fermentable substrates by a Saccharomyces cerevisiae mutant UV-sensitive for rho production


The mutant uvsρ 72 of Saccharomyces cerevisiae UV-sensitive for rho- production displays slower growth on media containing non-fermentable carbon sources such as glycerol or lactate. The slower growth on glycerol is not due to any deficiency in glycerol catabolism or mitochondrial oxidative phosphorylation. No modifications of the sensitivity to ethidium bromide of the mitochondrial ATPase activity could be detected. A mathematical model is presented which accounts for slower growth of uvsρ 72 on the sole basis of the continuous and elevated rho- production in the mutant strain. This model, which estimates the rate of mutation from the rate of growth and vice versa, has been verified experimentally in the case of uvsρ 72. The model has been generalised, so that it can be used for any microbial population subject to constant and high rates of any type of mutation providing that the mutant is stable, and either unable to grow or able to grow at this own rate different from that of the parental strain.

This is a preview of subscription content, log in to check access.



ultraviolet light (254 nm)


culture media containing respectively 3% glycerol, 1% glucose, 3% lactate and 0.1% glucose plus 3% glycerol


  1. Bastos, R.N., Mahler, H.R.: Molecular mechanisms of mitochondrial genetic activity. Effects of ethidium bromide on the deoxyribonucleic acid and energetics of isolated mitochondria. J. biol. Chem. 249, 6617–6627 (1974)

  2. Bergmeyer, H.U., Holz, G., Kauder, E.M., Mölering, H., Wieland, O.: Kristallisierre glycerokynase aus Candida mycoderma. Biochem. Z. 333, 471–480 (1961)

  3. Borstel, R.C., von: Measuring spontaneous mutation rates in yeast. In: Methods of cell biology (D.M. Prescott, ed.) Vol. 20, pp. 1 to 24. New York: Acad. Press 1978

  4. Briquet, M.: Transport of pyruvate and lactate in yeast mitochondria. Biochim. biophys. Acta (Amst.) 459, 290–299 (1977)

  5. Briquet, M., Sabadie-Pialoux, N., Goffeau, A.: Ziram, a sulfhydryl reagent and specific inhibitor of yeast mitochondria dehydrogenases. Arch. Biochem. Biophys. 174, 684–694 (1976)

  6. Claisse, M., Pajot, P.: Estimation of cytochrome contents in whole cells of Saccaromyces cerevisiae; evidence for presence of cytochrome cl in rho- “petite” mutants. Proceedings of the Fourth International Symposium on Yeasts, Vienna, Austria, pp. 114–115 (1974)

  7. Claisse, M., Péré-Aubert, G.A., Clavilier, L.P., Slonimski, P.P.: Méthode d'estimation de la concentration des cytochromes dans les cellules entières de levure. Europ. J. Biochem. 16, 430–438 (1970)

  8. Ephrussi, B., L'Heritier, Ph., Hottinguer, H.: Action de l'acriflavine sur les levures. VI. Analyse quantitative de la transformation des populations. Ann. Inst. Pasteur 77, 64–83 (1949)

  9. Goffeau, A., Landry, Y., Foury, F., Briquet, M., Colson, A.-M.: Oligomycin resistance of mitochondrial adenosine triphosphatase in a pleiotropic chromosomal mutant of a “petitenegative” yeast Schizosaccharomyces pombe. J. biol. Chem. 248, 7097–7105 (1973)

  10. Handwerker, A., Schweyen, R.J., Wolf, K., Kaudewitz, F.: Evidence for an extrakaryotic mutation affecting the maintenance of the rho factor in yeast. J. Bact. 113, 1307–1310 (1973)

  11. Herbert, D., Elsworth, R., Telling, R.C.: The continuous culture of bacteria; a theoretical and experimental study. J. gen. Microbiol. 14, 601–622 (1956)

  12. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin-Phenol reagent. J. biol. Chem. 193, 26–75 (1951)

  13. Luria, S.E., Delbrük, M.: Mutation of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943)

  14. Mahler, H.R.: Structural requirements for mitochondrial mutagenesis. J. supramol. Struct. 1, 449–460 (1973)

  15. Mahler, H.R., Bastos, R.N.: Coupling between mitochondrial mutation and energy transduction. Proc. nat. Acad. Sci. (Wash.) 71, 2241–2245 (1974)

  16. Mahler, H.R., Perlman, P.S.: Mutagenesis by ethidium bromide and mitochondrial membrane. J. supramol. Struct. 1, 105–124 (1972)

  17. Monod, J.: La technique de culture continue. Théorie et applications. Ann. Inst. Pasteur (Lille) 79, 390 (1950)

  18. Moustacchi, E., Enteric, S.: Repair of cytoplasmic genetic damage in yeast. In: Proceedings of the 4th International Congress of Radiation Research, pp. 586 Evian: Bellanger Sarth (1970a)

  19. Moustacchi, E., Enteric, S.: Differential “liquid holding recovery” for the lethal effect and cytoplasmic petite induction by UV light in Saccharomyces cerevisiae. Molec. gen. Genet. 109, 69–83 (1970b)

  20. Moustacchi, E., Waters, R., Heude, M., Chanet, R.: The present status of DNA repair mechanisms in UV irradiated yeast taken as a model eukaryotic system. In: Radiation research. Biomedical, chemical and physical perspective, (O.F. Nygaard, H.I. Adler, W.K. Sinclair, eds.), pp. 632–650. New York: Academic Press 1975

  21. Ogur, M., St. John, R., Nagai, S.: Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science 125, 925–929 (1957)

  22. Ogur, M., St. John, R., Ogur, S., Mark, A.M.: Direct estimation of mutation rate from mutant frequency under special conditions. Genetics 44, 483–496 (1959)

  23. Pullman, M.E., Penefsky, H.S.: Preparation and assay of phosphorylating submitochondrial systems: mechanically ruptured mitochondria. Methods Enzymol. 6, 277–284 (1963)

  24. Stevens, B.J., Moustacchi, E.: Ultrastructural characterization of mitochondria from a yeast mutant sensitive to “petite” induction (uvsρ72). In: Genetics, biogenesis and bioenergetics of mitochondria (W.Bandlow, R.J. Schweyen, D.Y. Thomas, K. Wolf, F. Kaudewitz, eds.), pp. 137–152. Berlin: Walter de Gruyter 1976

Download references

Author information

Additional information

This paper is number 1495 of the EURATOM Biology Division

Communicated by F. Kaudewitz

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Crosby, B., Colson, A., Briquet, M. et al. Basic for slow growth on non-fermentable substrates by a Saccharomyces cerevisiae mutant UV-sensitive for rho production. Molec. Gen. Genet. 164, 227–234 (1978).

Download citation


  • Glycerol
  • Lactate
  • Carbon Source
  • Ethidium
  • Ethidium Bromide