Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A gene involved in the metabolic control of ppGpp synthesis

Summary

A genetic locus has been identified which controls the basal synthesis of ppGpp in growing E. coli. Cells carrying a recessive allele of the relX gene have a very low concentration of ppGpp during balanced growth, and fail to accumulate ppGpp in response to carbon/energy source downshift. Moreover, the recessive relX allele renders the cells unable to grow at 42° C and, when coupled with relA, makes the cells sensitive to the presence of leucine in minimal medium. RelX is cotransduced with fuc and relA and located at approximately 59.4 min on the E. coli genetic map.

This is a preview of subscription content, log in to check access.

References

  1. Alföldi, L., Kerekes, E.: Neutralization of the amino acid sensitivity of RCrel Escherichia coli. Biochim. biophys. Acta (Amst.) 91, 155–157 (1964)

  2. Alföldi, L., Stent, G.S., Clowes, R.C.: The chromosomal site of the RNA control (RC) locus in E. coli. J. molec. Biol. 5, 348–355 (1962)

  3. Alföldi, L., Stent, G.S., Hooks, M., Hill, R.: Physiological effect of the RNA control (RC) gene in E. coli. Z. Vererbungslehre 94, 285–302 (1963)

  4. Bachmann, B.J., Low, K.B., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K-12. Bact. Rev. 40, 116–167 (1976)

  5. Block, R., Haseltine, W.A.: Thermolability of the stringent factor in rel mutants of Escherichia coli. J. molec. Biol. 77, 625–629 (1973)

  6. Block, R., Haseltine, W.A.: In vitro synthesis of ppGpp and pppGpp. In: Ribosomes (M. Nomura, A. Tissieres, and P. Lengyel, eds.), pp. 747–761. New York: Cold Spring Harbor Laboratory 1974

  7. Block, R., Haseltine, W.A.: Purification and properties of stringent factor. J. biol. Chem. 250, 1212–1217 (1975)

  8. Cashel, M.: The control of ribonucleic acid synthesis in E. coli IV. Relevance of unusual phosphorylated compounds from amino acid starved stringent strains. J. biol. Chem. 244, 3133–3141 (1969)

  9. Cashel, M.: Regulation of bacterial ppGpp and pppGpp. Ann. Rev. Microbiol. 29, 301–318 (1975)

  10. Cashel M., Gallant, J.: Two compounds implicated in the function of the R. C. gene of E. coli. Nature (Lond.) 221, 838–841 (1969)

  11. Cashel, M., Gallant, J.: Cellular regulation of guanosine tetraphosphate and guanosine pentaphosphate. In: Ribosomes (M. Nomura, A. Tissieres and P. Lengyel, eds.), pp. 733–745. New York: Cold Spring Harbor Laboratory 1974

  12. Cashel, M., Kalbacher, B.: The control of ribonucleic acid synthesis in E. coli V. Characterization of a nucleotide associated with the stringent response. J. biol. Chem. 245, 2309–2318 (1970)

  13. Chovnick, A., Gelbert, W., McCarron, M.: Organization of the rosy locus in Drosophila melanogaster. Cell 11, 1–10 (1977)

  14. Dobzhansky, T.: In: Genetics and the origin of species. New York: Columbia University Press 1951

  15. Fiil, N.: A functional analysis of the rel gene in Escherichia coli. J. molec. Biol. 45, 195–203 (1969)

  16. Fiil, N., Friesen, J.D.: Isolation of “relaxed” mutants of E. coli. J. Bact. 95, 729–731 (1968)

  17. Friesen, J., Fiil, N., von Meyenburg, K.: Synthesis and turnover of basal level guanosine tetraphosphate in Escherichia coli. J. biol. Chem. 250, 304–309 (1975)

  18. Gallant, J., Lazzarini, R.A.: The regulation of ribosomal RNA synthesis and degradation in bacteria. In: Protein synthesis, a series of advances, Vol. 2 (E.H. McConkey, ed.), pp. 309–359. New York: M. Dekker 1976

  19. Gallant, J., Margason, G., Finch, B.: On the turnover of ppGpp in Escherichia coli. J. biol. Chem. 247, 6055–6058 (1972)

  20. Gallant, J., Palmer, L., Pao, C.C.: Anomalous synthesis of ppGpp in growing cells. Cell 11, 181–185 (1977)

  21. Gallant, J., Shell, L., Bittner, R.: A novel nucleotide implicated in the response of Escherichia coli to energy source downshift. Cell 7, 75–84 (1976)

  22. Hansen, M.T., Pato, M.L., Molin, S., Fiil, N.P., von Meyenburg, K.: Simple downshift and resulting lack of correlation between ppGpp pool size and ribonucleic acid accumulation. J. Bact. 122, 585–591 (1975)

  23. Haseltine, W.A., Block, R.: Synthesis of Guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc. nat. Acad. Sci. (Wash.) 70, 1564–1568 (1973)

  24. Kaplan, S., Atherly, A.G., Barrett, A.: Synthesis of stable RNA in stringent Escherichia coli cells in the absence of charged transfer RNA. Proc. nat. Acad. Sci. (Wash.) 70, 689–692 (1973)

  25. Khan, S.R., Yamazaki, H.: Trimethoprim-induced accumulation of guanosine tetraphosphate (ppGpp) in Escherichia coli. Biochem. Biophys. Res. Commun. 48, 169–174 (1972)

  26. Laffler, T., Gallant, J.: SpoT, a new genetic locus involved in the stringent response in E. coli. Cell 1, 27–30 (1974)

  27. Lazzarini, R., Cashel, M., Gallant, J.: On the regulation of guanosine tetraphosphate levels in stringent and relaxed strains of Escherichia coli. J. biol. Chem. 246, 4381–4385 (1971)

  28. Lewontin, R.C.: The genetic basis of evolutionary change. New York: Columbia University Press 1974

  29. Miller, J.H.: General transduction. In: Experiments in molecular genetics (by J.H. Miller), pp. 201. New York: Cold Spring Harbor Laboratory 1972

  30. Pedersen, F.S., Kjeldgaard, N.O.: Analysis of the relA gene product of Escherichia coli. Europ. J. Biochem. 76, 91–97 (1977)

  31. Pedersen, F.S., Lund, E., Kjeldgaard, N.O.: Codon Specific tRNA dependent in vitro synthesis of ppGpp and pppGpp. Nature (Lond.) New Biol. 243, 13–15 (1973)

  32. Sokawa, Y., Sokawa, J., Kaziro, Y.: Regulation of stable RNA synthesis and ppGpp levels in growing cells of Escherichia coli Cell 5, 69–73 (1975)

  33. Stent, G.S., Brenner, S.: A genetic locus for the regulation of ribonucleic acid synthesis. Proc. nat. Acad. Sci. (Wash.) 47, 2005–2014 (1961)

  34. Stephens, J.C., Artz, S.W., Ames, B.N.: Guanosine 5′-diphophate 3′-diphosphate (ppGpp): Positive effector for histidine operon transcription and general signal for amino acid deficiency. Proc. nat. Acad. Sci. (Wash.) 72, 4389–4393 (1975)

  35. Stern, C., Schaeffer, E.W.: On wild type isoalleles in Drosophila melanogaster. Proc. nat. Acad. Sci. (Wash.) 29, 361–367 (1943)

  36. Wimslow, R.M.: A consequence of the rel gene during a glucose to lactate downshift in Escherichia coli. J. biol. Chem. 246, 4872–4877 (1971)

  37. Wu, T.T.: A model for three-point analysis of random general transduction. Genetics 54, 405–410 (1966)

Download references

Author information

Correspondence to Chia Chu Pao.

Additional information

Communicated by W. Gilbert

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pao, C.C., Gallant, J. A gene involved in the metabolic control of ppGpp synthesis. Molec. Gen. Genet. 158, 271–277 (1978). https://doi.org/10.1007/BF00267198

Download citation

Keywords

  • Leucine
  • Minimal Medium
  • Metabolic Control
  • Genetic Locus
  • Recessive Allele