Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Polymerization in black lipid membranes

Influence on ion transport

  • 48 Accesses

  • 19 Citations

Abstract

A variety of different lipids containing dienoyl groups in the side chains were tested for membrane formation using the planar lipid bilayer approach. One of these lipids formed stable bilayers which could be polymerized using UV-illumination. The influence of the polymerization was studied in monolayers, lipid vesicles and planar bilayers. The stability of the lipid bilayer membranes was increased by polymerization. Thus, the lifetime of the membranes increased from about 1 h to 4–5 h or longer. Furthermore, the specific conductance of unmodified membranes and of carrier-mediated transport is reduced. The transport of lipophilic ions was investigated as a function of polymerization using the charge-pulse method. The absorption of dipicrylamine (DPA-) is not affected. The translocation of this compound and of tetraphenylborate (B(Ph) 4 - ) showed a strong decrease with polymerization time. The influence of polymerization on the membrane structure may be explained on the basis of a strong viscosity increase in the lipid bilayer membrane.

This is a preview of subscription content, log in to check access.

References

  1. Albrecht O (1983) The construction of a microprocessor-controlled filmbalance for precision measurements of isotherms and isobars. Thin Solid Films 99:227–234

  2. Bader H, Ringsdorf H, Schmidt B (1984) Watersoluble polymers in medicine. Angew Makromol Chem 123/124:457–485

  3. Bader H, Dorn K, Hupfer B, Ringsdorf H (1985) Polymeric monolayers and liposomes as models for biomembranes. How to bridge the gap between polymer science and membrane biology? In: Gordon M (ed) Polymer membranes. Springer, Berlin Heidelberg New York Tokyo

  4. Benz R (1978) Alkali ion transport through lipid bilayer membranes mediated by Enniatin A and B and Beauvericin. J Membr Biol 43:367–394

  5. Benz R, Conti F (1981) Structure of the squid axon membrane as derived from charge pulse relaxation studies in the presence of adsorbed lipophilic ions. J Membr Biol 59:91–104

  6. Benz R, Cros D (1978) Influence of sterols on ion transport through lipid bilayer membranes. Biochim Biophys Acta 506:265–280

  7. Benz R, Gisin BE (1978) Influence of membrane structure on ion transport through lipid bilayer membranes. J Membr Biol 40:293–314

  8. Benz R, Janko K (1976) Voltage induced capacitance relaxation of lipid bilayer membranes. Effects of membrane composition. Biochim Biophys Acta 455:721–738

  9. Benz R, Läuger P (1977) Transport kinetics of dipicrylamine through lipid bilayer membranes. Effects of membrane structure. Biochim Biophys Acta 506:245–258

  10. Benz R, Nonner W (1981) Structure of the axolemma of frog myelinated nerve: Relaxation experiments with a lipophilic probe ion. J Membr Biol 59:127–134

  11. Benz R, Stark G (1975) Kinetics of macroletrolide-induced ion transport across lipid bilayer membranes. Biochim Biophys Acta 382:27–40

  12. Benz R, Zimmermann U (1983) Evidence for the presence of mobile charges in the cell membrane of Valonia utricularis. Biophys J 43:13–26

  13. Benz R, Läuger P, Janko K (1976) Transport of hydrophobic ions in lipid bilayer membranes. Charge pulse relaxation studies. Biochim Biophys Acta 455:701–720

  14. Benz R, Beckers F, Zimmermann U (1979) Reversible electrical breakdown of lipid bilayer membranes: A charge pulse relaxation study. J Membr Biol 48:181–204

  15. Benz R, Prass W, Ringsdorf H (1982) Black lipid membranes from polymerizable lipids. Angew Chem [Suppl] 94:869–880

  16. Benz R, Hallmann D, Poralla K, Eibl H (1983) Interaction of hopanoids with phosphatidylcholines containing oleic and ω-cyclohexyldodecanoic acid in lipid bilayer membranes. Chem Phys Lipids 34:7–24

  17. Büschl R (1984) Phasenverhalten, Oberflächenaktivität und Fusion von Modellmembranen aus polymerisierbaren und natürlichen Lipiden. Ph.D. Thesis, University of Mainz

  18. Eisenman G, Krasne S, Ciani SM (1975) The kinetic and equilibrium components of selective ionic permeability mediated by nactin- and valinomycin-type carriers having systematically varied degrees of methylation. Ann NY Acad Sci 264:34–47

  19. Elbert R (1984) Untersuchung ungesättigter und fluorhaltiger Amphiphiler in Monoschichten und in Liposomen. Ph.D. Thesis, University of Mainz

  20. Fendler JH (1984) Polymerized surfactant vesicles: novel membrane mimetic systems. Science 223:888–894

  21. Ketterer B, Neumcke B, Läuger P (1971) Transport mechanism of hydrophobic ions through lipid bilayer membranes. J Membr Biol 5:225–245

  22. Pabst R, Ringsdorf H, Koch H, Dose K (1983) Light-driven proton transport of bacteriorhodopsin incorporated into long-term stable liposomes of a polymerizable sulfolipid. FEBS Lett 154:5–9

  23. Pickar AD, Benz R (1977) Transport of oppositely charged lipophilic probe ions in lipid bilayer membranes having various structures. J Membr Biol 44:353–376

  24. Schupp H (1981) Aufbau von stabilen Modellmembranen durch polymerisierbare Lipid-Analoga mit Dienststruktur. Ph.D. Thesis, University of Mainz

  25. Smith JR, Coster HGL, Laver DR (1985) The dependence of the conductance of phosphatidylcholine bilayers upon the concentration and composition of the external electrolyte. Biochim Biophys Acta 812:181–192

  26. Stark G, Benz R (1971) The transport of potassium through lipid bilayer membranes by the neutral carriers valinomycin and monactin. J Membr Biol 5:133–153

  27. Wagner N, Dose K, Koch H, Ringsdorf H (1981) Incorporation of ATP-synthetase into long-term stable liposomes of a polymerizable sulfolipid. FEBS Lett 132:313–318

Download references

Author information

Correspondence to H. Ringsdorf.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benz, R., Elbert, R., Prass, W. et al. Polymerization in black lipid membranes. Eur Biophys J 14, 83–92 (1986). https://doi.org/10.1007/BF00263064

Download citation

Key words

  • Black lipid membrane
  • carrier
  • charge pulse relaxation
  • lipophilic ions
  • polymerizable lipid