Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Surface treatment for mitigation of hydrogen absorption and penetration into AISI 4340 steel and Inconel 718 alloy

  • 95 Accesses

  • 5 Citations

Abstract

It is shown that the underpotential deposition of zinc on AISI 4340 steel and Inconel 718 alloys inhibits the hydrogen evolution reaction and the degree of hydrogen ingress. In the presence of monolayer coverage of zinc on the substrate surfaces, the hydrogen evolution current densities are reduced 46% and 68% compared with the values obtained on bare AISI 4340 steel and Inconel 718 alloy, respectively. As a consequence, the underpotential deposition of zinc on AISI 4340 steel and Inconel 718 alloy membrane reduces the steady state hydrogen permeation current density by 51% and 40%, respectively.

This is a preview of subscription content, log in to check access.

Abbreviations

C S :

surface hydrogen concentration (mol cm−3)

D :

hydrogen diffusion coefficient (cm2 S−1)

E :

potential (V)

E pdep :

predeposition potential (V)

F :

Faraday constant (96 500 C mol−1)

i :

current density (A cm−2)

i a :

HER current density in the absence of predeposition of zinc (A cm−2)

i 0 :

exchange current density (A cm−2)

i p :

HER current density in the presence of predeposition of zinc (A cm−2)

j t :

transition hydrogen permeation current density (A cm−2)

j o :

initial hydrogen permeation current density (A cm−2)

j :

steady state hydrogen permeation current density (A cm−2)

k″:

thickness dependent absorption-adsorption constant (mol cm−3)

L :

membrane thickness (cm)

Q max :

maximum charge required for one complete layer of atoms on a surface (C cm−2)

t :

time (s)

αc :

cathodic transfer coefficient, dimensionless

θH :

hydrogen surface coverage, dimensionless

θZn :

zinc surface coverage, dimensionless

φ:

work function (eV)

τ = t D/L 2 :

(dimensionless time)

References

  1. [1]

    P. Subramanyan, in ‘Comprehensive Treatise of Electrochemistry’, (edited by J. O'M Bockris, Brian E. Conway, Ernest Yeager and Ralph E. White), Plenum Press, New York (1981) 4, p. 411.

  2. [2]

    S. Bagaev, K. Pedan and V. Kudryavtsev, Zatshtita Metallov 19 (1983) 968.

  3. [3]

    V. Kudryavtsev, K. Pedan, H. Barbashkina and S. Vagramjan, ibid 9 (1973) 161.

  4. [4]

    J. J. Reilly, Z. Phys. Chem. 117 (1979) 655.

  5. [5]

    R. N. Iyer, H. W. Pickering and M. Zamanzedeh, J. Electrochem. Soc. 136 (1989) 2463.

  6. [6]

    D. M. Kolb, in ‘Advances in Electrochemistry and Electrochemical Engineering’, (edited by H. Gerischer and, C. W. Tobias), John Wiley & Sons, New York (1978) 11, p. 125.

  7. [7]

    R. R. Adzic, in ‘Advances in Electrochemistry and Electrochemical Engineering’, (edited by H. Gerischer, and C. W. Tobias), John Wiley & Sons, New York, (1982) 13, p. 159.

  8. [8]

    D. M. Kolb, M. Przasnyski and H. Gerischer, J. Electroanal. Chem. 54 (1974) 25.

  9. [9]

    D. M. Drazic and L. Z. Vorkapic, Corros. Sci. 18 (1978) 907.

  10. [10]

    A. Despic and M. Pavlovic, Electrochim. Acta 27 (1982) 1539.

  11. [11]

    S. Rashkov, C. Bozhkov, V. Kudryavtsev, K. Pedan and S. Bagaev, J. Electroanal. Chem. 248 (1988) 421.

  12. [12]

    G. Zheng, B. N. Popov and R. E. White, J. Electrochem. Soc. 140 (1993) 3153.

  13. [13]

    G. Zheng, B. N. Popov and R. E. White, ibid 141 (1994) 1220.

  14. [14]

    B. N. Popov, G. Zheng and R. E. White. To be published in Corrosion, August, (1994).

  15. [15]

    G. Zheng, B. N. Popov and R. E. White, J. Electrochem. Soc. 141 (1994) 1526.

  16. [16]

    B. N. Popov, G. Zheng and R. E. White. To be published in Corros. Sci (1994).

  17. [17]

    M. A. V. Devanathan and L. Stachurski, Proc. R. Soc. Lond. A270 (1962) 90.

  18. [18]

    S. Trasatti, J. Electroanal. Chem. 33 (1971) 351.

  19. [19]

    G. Adzic, J. McBreen and M. G. Chu, J. Electrochem. Soc. 128 (1981) 1691.

  20. [20]

    M. G. Chu, J. McBreen and G. Adzic, ibid 128 (1981) 2281.

  21. [21]

    B. J. Bowles, Electrochim. Acta 15 (1970) 737.

  22. [22]

    B. J. Bowles, ibid 15 (1970) 789.

  23. [23]

    R. R. Adzic, M. D. Spasojevic and A. R. Despic, ibid 24 (1979) 569.

  24. [24]

    A. Frumkin, in ‘Advances in Electrochemistry and Electrochemical Engineering’, (edited by P. Delahay and C. W. Tobias), Interscience, New York (1963) 3, p. 163.

  25. [25]

    J. O'M. Bockris, J. McBreen and L. Nanis, J. Electrochem. Soc. 112 (1965) 1027.

  26. [26]

    J. McBreen and A. M. Genshow, Proceedings of the Conference on Fundamental Aspects of Stress Corrosion Cracking, NACE Columbus (1969) p. 51.

  27. [27]

    M. A. V. Devanathan, Tech. Rep. ONR/551/22/NR-036-028, Office of Naval Research (1961).

  28. [28]

    N. Boes and H. Zuchner, J. Less-Common Metals 49 (1976) 223.

  29. [29]

    W. Beck, J. O'M Bockris, J. M. Breen and L. Nanis, Proc. R. Soc. Lond. A290 (1966) 220.

  30. [30]

    W. M. Robertson, Metall. Trans. 10A (1979) 489.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zheng, G., Popov, B.N. & White, R.E. Surface treatment for mitigation of hydrogen absorption and penetration into AISI 4340 steel and Inconel 718 alloy. J Appl Electrochem 25, 212–218 (1995). https://doi.org/10.1007/BF00262958

Download citation

Keywords

  • Hydrogen
  • Zinc
  • Steady State
  • Substrate Surface
  • Surface Treatment