Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Laser-Raman remote temperature sensing in liquids

Abstract

A feasibility study has been conducted on the use of laser-Raman spectroscopy as a remote temperature sensing technique for liquids. Empirical relations between the temperature and parameters describing Raman band intensities were determined over a temperature range of 15 to 65 °C in carbon tetrachloride, benzene, ethylene glycol, aqueous sodium nitrate (5 M), and water. Using a 2-W argon ion laser and two 0.25-m monochromators in tandem, it was possible to measure temperatures in water to within 2 °C and, in ethylene glycol, to within 4 °C.

This is a preview of subscription content, log in to check access.

References

  1. Anderson, A. 1971 (ed.): The Raman effect. Vols. 1, 2. New York: Marcel Dekker

  2. Bailey, G. F.; Saima, K; Scherer, J. R. 1967: A new Raman micro-sampling technique. Anal. Chem. 39, 1040

  3. Chang, C. H.; Young, L. A.; Leonard, D. A. 1974: Remote measurement of fluid temperature by Raman scattered radiation. US patent: 3,986,755

  4. Douglas, A. E.; Rank, D. H. 1948: Determination of the depolarization factors of highly polarized Raman lines. J. Opt. Soc. Am. 38, 281

  5. Eisenberg, D.; Kauzmahn, W. 1969: The structure and properties of water, pp. 228–293. New York: Oxford University Press

  6. Eryon, N. D.; Glicksman, Q. R. 1972: An experimental and analytical study of radiation and conduction heat transfer in molten glass. Trans. ASME J. Heat Transfer. May, 224–230

  7. Herzberg, G. 1950: Spectra of diatomic molecules. 2nd ed. New York: Van Nostrand

  8. Hirschfeld, T. 1973: Correction of Raman cross sections from laboratory to remote spectrometer geometries. Appl. Spectr. 27, 289

  9. Jaech, J. L. 1973: Statistical methods in nuclear material control, pp. 120–129. Report TID-26298. US AEC

  10. Koningstein, J. A. 1972: Introduction to the theory of the Raman effect. Dordrecht: D. Reidel Publ. Co.

  11. Kulacki, F. A., Goldstein, R. J. 1972: Thermal convection in a horizontal fluid layer with uniform volumetric energy sources. J. Fluid Mech. 55, 271–287

  12. Leonard, D. A.; Caputo, B.; Johnson, R. L. 1977: Experimental remote sensing of subsurface temperature in natural ocean water. Geophysical Res. Lett. 4, 279

  13. Porto, S. P. S. 1966: Angular dependence and depolarization ratio of the Raman effect. J. Opt. Soc. Am. 56, 1585

  14. Scherer, J. P.; Go, M. K.; Kint, S. 1974: Raman spectra and structure of water from − 10 to 90°C. J. Phy. Chem. 78, 1304–1313

  15. Scherer, J. R.; Kint, S.; Bailey, G. F. 1971: Spectra display of isotropic and anisotropic Raman scattering. J. Mol. Spect. 39, 146

  16. Tobin, M. C. 1971: Laser Raman spectroscopy. New York: Wiley-Interscience

  17. Walrafen, G. E. 1964: Raman spectral studies of water structure. J. Chem. Phys. 40, 3249–3256

  18. Walrafen, G. E. 1966: Raman spectral studies of the effects of temperature on water and electrolyte solutions. J. Chem. Phys. 44, 1546–1568

  19. Walrafen, G. E. 1967: Raman spectral studies of the effects of temperature on water structure. J. Chem. Phys. 47, 114–126

  20. Walrafen, G. E. 1968: Raman spectral studies of HDO in H2O. J. Chem. Phys. 48, 244–251

  21. Walrafen, G. E. 1970: Raman spectral studies of the effects of perchlorate ion water structure. J. Chem. Phys. 52, 4176–4198

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pan, Y., Faw, R.E. & Lester, T.W. Laser-Raman remote temperature sensing in liquids. Experiments in Fluids 2, 81–88 (1984). https://doi.org/10.1007/BF00261326

Download citation

Keywords

  • Sodium
  • Nitrate
  • Benzene
  • Argon
  • Ethylene Glycol