Archive for Rational Mechanics and Analysis

, Volume 15, Issue 1, pp 1–13 | Cite as

Alternating flow of non-Newtonian fluids in tubes of arbitrary cross-section

  • A. C. Pipkin


Neural Network Complex System Nonlinear Dynamics Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Eriksen, J. L., Quart. Appl. Math. 14, 318 (1956).MathSciNetCrossRefGoogle Scholar
  2. [2]
    Green, A. E., & R. S. Rivlin, Quart. Appl. Math. 14, 299 (1956).MathSciNetCrossRefGoogle Scholar
  3. [3]
    Langlois, W. E., & R. S. Rivlin, Brown Univ. Tech. Rept. DA-4725/3 (1959).Google Scholar
  4. [4]
    Langlois, W. E., & R. S. Rivlin, Rend. di Mat. 22, 169 (1963).Google Scholar
  5. [5]
    Rivlin, R. S., Proc. Int. Symp. on Second-Order Effects in Elasticity, Plasticity, and Fluid Dynamics (Edited by M. Reiner). New York: Pergamon Press Ltd. (to be published.)Google Scholar
  6. [6]
    Rivlin, R. S., Research Frontiers in Fluid Dynamics (edited by G. Temple & R. J. Seeger). New York: Interscience Pub. Inc. (to be published).Google Scholar
  7. [7]
    Rivlin, R. S., & J. L. Ericksen, J. Ratl. Mech. Anal. 4, 323 (1955).Google Scholar
  8. [8]
    Lee, E. H., Quart. Appl. Math. 13, 183 (1955).MathSciNetCrossRefGoogle Scholar
  9. [9]
    Rivlin, R. S., ZAMP 13, 589 (1962).ADSGoogle Scholar
  10. [10]
    Schlichting, H., Boundary Layer Theory. New York: McGraw-Hill Book Co. Inc., 1955.zbMATHGoogle Scholar
  11. [11]
    Pipkin, A. C., Submitted for publication.Google Scholar
  12. [12]
    Pipkin, A. C., & R. S. Rivlin, To be published in ZAMP.Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • A. C. Pipkin
    • 1
  1. 1.Division of Applied MathematicsBrown UniversityProvidence

Personalised recommendations