European Biophysics Journal

, Volume 16, Issue 5, pp 313–319 | Cite as

Galvanotaxis of human granulocytes

Dose-response curve
  • B. Rapp
  • A. de Boisfleury-Chevance
  • H. Gruler


The galvanotactic response of human granulocytes was investigated theoretically and experimentally. The basic results are: (i) The granulocytes move towards the anode. (ii) The directed movement has been quantified by two different polar order parameters-the McCutcheon index and the average of cos ϕ. (iii) The polar order parameters are a function of the applied electric field (= dose-response curve). (iv) The inverse of the galvanotactic constant of migrating cells (analogous to the Michaelis-Menten constant) has a value of-0.2±0.03 V/mm. (v) The galvanotactic response of granulocytes is a non-cooperative process with a cooperativity coefficient of 1±0.2. (vi) The galvanotactic constant is a function of pH. (vii) The protein essential for the galvanotactic response is very likely a G-protein.

Key words

Galvanotaxis granulocytes dose-response curve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematical Series 55, pp 355Google Scholar
  2. Atkins PW (1986) Physical Chemistry. Oxford University Press, Oxford, p 260Google Scholar
  3. Barker AT, Jaffe LF, Vanable JW (1982) The glabrous epidermis of cavies contains a powerful battery. Am J Physiol. 242:R358-R366Google Scholar
  4. Becker EL, Kanaho Y, Kermode JC (1987) Nature and functioning of the pertussis toxin-sensitive G-protein of neutrophils. Biomed Pharmacol 41:289–297Google Scholar
  5. Brokaw CJ (1958) Chemotaxis of bracken spermatozoids. Implications of electrochemical orientation. J Exp Biol 35:197–213Google Scholar
  6. Brokaw CJ (1959) Random and oriented movements of Bracken spermatozoids. J Cell Comp Physiol 59:95–101Google Scholar
  7. Bültmann BD, Gruler H (1983) Analysis of the directed and nondirected movement of human granulocytes: influence of temperature and echo 9 virus on N-formyl methionyl leucyl phenylalanine induced chemokinesis and chemotaxis. J Cell Biol 96:1708–1716Google Scholar
  8. Dryl SA (1963) Contribution to mechanism of chemotactic response on Paramecium caudatum. Anim Behav 11:393–396Google Scholar
  9. Fromherz P (1988) Selforganization of the fluid mosaic of charged channel proteins in membranes. Proc Natl Acad Sci USA 85:6353–6357Google Scholar
  10. Fukushima K, Senda N, Innui H, Mirua H, Tamai Y, Murakami Y (1953) Studies on galvanotaxis of leukocytes. Med J Osaka Univ 4:195–208Google Scholar
  11. Gooday GW (1981) Chemotaxis in eukaryontic microbes. In: Lackie JM, Wilkinson PC (eds) Biology of the chemotactic response. Society for Experimental Biology. Seminar Series, vol 12. Cambridge University Press, London, pp 115–138Google Scholar
  12. Gruler H (1984) Cell movement analysis in necrotactic assay. Blood Cells 10:107–122Google Scholar
  13. Gruler H (1988a) Cell movement and symmetry of the cellular environment. Z Naturforsch 43c, 754–764Google Scholar
  14. Gruler H, (1988b) Biophysics of leukocytes: Neutrophil chemotaxis, characteristics and mechanisms. In: Hallet MB (ed) The cellular biochemistry and physiology of neutrophil. CRC Press, Boca Raton, FloridaGoogle Scholar
  15. Gruler H, Bültmann BD (1984a) Analysis of cell movement, Blood Cells 10:61–77Google Scholar
  16. Gruler H, Bültmann B (1984 b) Virus-induced order-disorder transition of moving human leukocytes. Nuovo Cimento (Suppl) 3 D:152–173Google Scholar
  17. Gruler H, Nuccitelli R (1986) New insights into galvanotaxis and other directed cell movements: an analysis of the translocation distribution function. In: Nuccitelli R (ed) Ionic currents in development. Alan R Liss, New York, pp 337–347Google Scholar
  18. Haken H (1983) Synergetics. Nonequilibrum phase transitions and self-organization in physics, chemistry, and biology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. Hille B (1984) Ionic channels of excitable membranes. Sinauer, Sunderland, MAGoogle Scholar
  20. Lauffenburger D, Rothman C, Zigmond SH (1983) Measurement of leukocyte motility and chemotaxis parameters with a linear under-agarose migration assay. J Immunol 131:940–947Google Scholar
  21. Lehninger AL (1975) Biochemistry. Worth, New YorkGoogle Scholar
  22. Malvista SE, de Boisfleury-Chevance A (1982) The cytokineplast: purified, stable and functional machinery from human blood polymorphonuclear leukocytes. J Cell Biol 95:960–973Google Scholar
  23. Nuccitelli R (1983) Transcellular ion currents: Signals and effectors of cell polarity. Mod Cell Biol 2:451–481Google Scholar
  24. Snyderman R (1983) Pharmacologic manipulation of leukocyte chemotaxis. Present knowledge and future trends. Am J Med 31:10–18Google Scholar
  25. Stryer L, Bourne HRG (1986) G-proteins: a family of signal transducers. Annu Rev Cell Biol 2:391–419Google Scholar
  26. Zigmond SH (1977) Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol 75:606–616Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • B. Rapp
    • 1
  • A. de Boisfleury-Chevance
    • 2
  • H. Gruler
    • 1
  1. 1.Abteilung für BiophysikUniversität UlmUlmFederal Republic of Germany
  2. 2.Centre d'Etudes sur l'Ecologie des Cellules du Sang, Département d'HématologieHôpital de la SalpétrièreParisFrance

Personalised recommendations