Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On a divergent integral in magnetohydrodynamics

  • 38 Accesses

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Kaplun, S., & P. A. Lagerstrom: Asymptotic Expansions of Navier-Stokes Solutions for Small Reynold's Numbers. Journal of Mathematics and Mechanics 6, No. 5, 585–593 (1957).

  2. [2]

    Frieman, E. A., & R. M. Kulsrud: Problems in Hydromagnetics. Advances in Applied Mechanics 5, 195–231 (1958).

  3. [3]

    MacGillivray, D.: Motion of a Current Element Through a Fluid of Low Electrical Conductivity. Thesis, 1960, California Institute of Technology.

  4. [4]

    Oseen, C. W.: Hydrodynamik. Leipzig: Akademische Verlagsgesellschaft 1927.

  5. [5]

    Schwartz, L.: Théorie des Distributions, Tome I, Actualités Scientifiques et Industrielles 1245. Paris: Hermann 1957.

  6. [6]

    MacGillivray, D.: Flow of an Electrically Conducting Viscous Fluid Past a Current-Carrying Finite Flat Plate. Tech. Report No. 32-57, 1961, Jet Propulsion Laboratory, California Institute of Technology.

Download references

Author information

Additional information

Communicated by A. Erdélyi

Rights and permissions

Reprints and Permissions

About this article

Cite this article

MacGillivray, D. On a divergent integral in magnetohydrodynamics. Arch. Rational Mech. Anal. 9, 145–152 (1962). https://doi.org/10.1007/BF00253341

Download citation

Keywords

  • Neural Network
  • Complex System
  • Nonlinear Dynamics
  • Electromagnetism