Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

On the asymptotic behaviour at infinity of solutions in linear elasticity

  • 89 Accesses

  • 42 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. A. Toupin, Saint-Venant's principle. Arch. Rational Mech. Anal., 1965, 18, no. 2, 83–96.

  2. 2.

    J. K. Knowles, On Saint-Venant's Principle in the two dimensional theory of elasticity. Arch. Rational Mech. Anal., 1966, 21, 1–22.

  3. 3.

    O. A. Oleinik & G. A. Yosifian, Saint-Venant's Principle in plane elasticity and boundary value problems for the biharmonic equation in unbounded domains. Sibirski Mat. Journ., 1978, v. 19, no. 5, 1154–1165.

  4. 4.

    O. A. Oleinik & G. A. Yosifian, A mixed boundary value problem for the system of elasticity and Saint-Venant's Principle. Collection of papers “Complex analysis and its applications”. Moscow, Nauka, 1977.

  5. 5.

    G. Fichera, Remarks on Saint-Venant's Principle. Collection of papers Complex analysis and its applications, Moscow, Nauka, 1977.

  6. 6.

    N. Weck, An explicit Saint-Venant's Principle in three-dimensional elasticity. Lect. Notes in Math. 564, 1976, 518.

  7. 7.

    O. A. Oleinik & G. A. Yosifian, On singularities at the boundary points and uniqueness theorems for solutions of the first boundary value problem of elasticity. Comm. in Part. Diff. Eqs., 1977, v. 2, no. 9, 937–969.

  8. 8.

    O. A. Oleinik, G. A. Yosifian, & I. N. Tavkhelidze, On the asymptotic behaviour of solutions of the biharmonic equation in a neighbourhood of nonregular boundary points and at infinity. Trudi Moscow Math. Society, v. 42, 1980, 160–175.

  9. 9.

    I. Kopacek & O. A. Oleinik, On the asymptotic properties of solutions of the system of elasticity, Uspehi Mat. Nauk, 1978, v. 33, no. 5, 189–190.

  10. 10.

    O. A. Oleinik, G. A. Yosifian, & I. N. Tavkhelidze, Estimates of solutions of the biharmonic equation near nonregular boundary points and at infinity. Uspehi Mat. Nauk, 1978, v. 33, no. 3, 181–182.

  11. 11.

    A. L. Goldenweiser, Theory of thin elastic shells, 2nd edition, Nauka, Moscow, 1976.

  12. 12.

    M. I. Gusein-Zade, On the plane problem of elasticity in a semi-strip. Prikladnaja Mat. i Mech., v. 41, no. 1, 1977, 124–133.

  13. 13.

    G. P. Panasenko, Higher order asymptotics of solutions of equations with rapidly oscillating coefficients. Dokladi AN SSSR, v. 240, no. 6, 1978, 1293–1296.

  14. 14.

    O. A. Oleinik & G. A. Yosifian, On the behaviour at infinity of solutions of second order elliptic equations in domains with non-compact boundaries. Matem. Sbornik 1980, 112 (154), no. 4, 588–610.

  15. 15.

    G. Fichera, Existence theorems in elasticity. Handbuch der Physik, Band VI/a2. Springer-Verlag.

  16. 16.

    L. Hörmander, Linear differential operators. Springer-Verlag, 1963.

  17. 17.

    L. V. Kantorovich & G. P. Akilov, Functional Analysis. Moscow, Nauka, 1977.

  18. 18.

    P. P. Mosolov & V. P. Miasnikov, A proof of Korn's inequality, Dokladi AN SSSR, v. 201, no. 1, 1971, 36–39.

Download references

Author information

Additional information

Communicated by G. Fichera

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oleinik, O.A., Yosifian, G.A. On the asymptotic behaviour at infinity of solutions in linear elasticity. Arch. Rational Mech. Anal. 78, 29–53 (1982). https://doi.org/10.1007/BF00253223

Download citation

Keywords

  • Neural Network
  • Complex System
  • Asymptotic Behaviour
  • Nonlinear Dynamics
  • Electromagnetism