Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A constructive approach to one-parameter semi-groups of operators in Hilbert space

  • 32 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Ladyženskaja, O.A., O razrešimosti osnovnyh kraevyh zadac dlja uravnenij paraboličeskogo i giperboličeskogo tipov. Dokl. Adad. Nauk SSSR XCVH, no 3, 395–398 (1954).

  2. [2]

    Ladyzenskaja, O.A., Ob odnom metode dokazatel'stva teorem syščestvovanija i edinstvennosti rešenija zadači koši dlja giperboličeskih uravnenij. Dokl. Akad. Nauk SSSR 10, no 1, 17–20 (1955).

  3. [3]

    Ladyzenskaja, O.A., Orešenii restacionarnyh operatornyh uravnenij različnyh tipov. Dokl. Akad. Nauk SSSR 102, no 2, 207–210 (1955).

  4. [4]

    Dunford, N., & J.T. Schwartz, Linear Operators, Part I. New York: Interscience Publ.

  5. [5]

    Achiezer, N.I., & I.M. Glasmann, Theorie der linearen Operatoren im Hilbertraum. Berlin: Akad. Verlag 1965.

  6. [6]

    Helmberg, G., Introduction to Spectral Theory in Hubert Space. Amsterdam: North Holland Publ. Co., 1969.

  7. [7]

    de Graaf, J., & L.A. Peletter, On the solution of Schrödinger-like wave equations. Rend. Sem. Mat. Padova XLII, 329–340 (1969).

  8. [8]

    Hartman, P., Ordinary Differential Equations. New York: J. Wiley, 1964.

  9. [9]

    Whittaker, E.T., & G.N. Watson, A Course of Modern Analysis. Cambridge University Press.

  10. [10]

    Yosida, K., Functional Analysis, 2nd printing. Berlin-Heidelberg-New York: Springer 1966.

Download references

Author information

Additional information

Communicated by H. Görtler

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Graaf, J. A constructive approach to one-parameter semi-groups of operators in Hilbert space. Arch. Rational Mech. Anal. 43, 125–153 (1971). https://doi.org/10.1007/BF00252775

Download citation

Keywords

  • Neural Network
  • Hilbert Space
  • Complex System
  • Nonlinear Dynamics
  • Electromagnetism