Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of alcohols and temperature on the hopanoid content of Zymomonas mobilis

  • 102 Accesses

  • 24 Citations


The influence of different culture conditions on the hopanoid content of Zymomonas mobilis was investigated in batch cultures. With a gas-liquid chromatographic method it could be shown that the content of 1,2,3,4-tetrahydroxypentane-29-hopane (THBH) reached a maximum value in the stationary phase due to the high level of ethanol accumulated in the medium. The hopanoid content increased sharply with the addition of ethanol to the culture. Ethanol was shown to be the most effective of the alcohols tested in causing an increase of the hopanoid content. Furthermore, an alteration of the incubation temperature from 14° to 37°C also caused an increase of the amount of hopanoids.

This is a preview of subscription content, log in to check access.




HMG-CoA reductase:

3-hydroxy-3-methylglutaryl coenzyme A reductase


  1. Benz R, Hallmann D, Poralla K, Eibl H (1983) Interaction of hopanoids with phosphatidylcholines containing oleic and ω-cyclohexyldodecanoic acid in lipid bilayer membranes. Chem Phys Lipids 34:7–24

  2. Bisseret P, Wolff G, Albrecht AM, Tanaka T, Nakatan Y, Ourisson G (1983) A direct study of the cohesion of lecithin bilayers: The effect of hopanoids and α,ω-dihydroxycarotenoids. Biochem Biophys Res Commun 110:320–324

  3. Bligh EG, Duyer WJ (1959) a rapid method of total lipid extraction and purification. Canad J Biochem Physiol 37:911–917

  4. Bringer S, Härtner T, Poralla K, Sahm H (1985) Influence of ethanol on the hopanoid content and the fatty acid pattern in batch and continuous cultures of Zymomonas mobilis. Arch Microbiol 140:312–316

  5. Dombek KM, Ingram LO (1984) Effects of ethanol on the Escherichia coli plasma membrane. J Bacteriol 157:233–239

  6. Finn RK, Bringer S, Sahm H (1984) Fermentation of arabinose to ethanol by Sarcina ventricult. Appl Microbiol Biotechnol 19:161–166

  7. Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678

  8. Ingram LO (1986) Microbial tolerance to alcohols: role of the cell membrane. Trends in Biotechnology 4:40–44

  9. Ingram LO, Buttke T (1984) Effects of alcohols on microorganisms. Adv Microbial Physiol 25:253–300

  10. Jenke HS (1985) Polychlorinated biphenyls interfere with the regulation of hydroxy-methylglutaryl-coenzyme A reductase activity in rat liver via enzyme-lipid interaction and at the transcriptional level. Biochim Biophys Acta 837:85–93

  11. Kannenberg E (1983) Membraneigenschaften von Hopanoiden und Lipiden, die Fettsäuren mit endständigen Verzweigungen und ω-Cyclohexanringen enthalten. Dissertation Universität Tübingen

  12. Langworthy TA, Mayberry WR (1976) A 1,2,3,4-tetrahydroxypentane-substituted pentacyclic triterpene from Bacillus acidocaldarius. Biochim Biophys Acta 431:570–577

  13. McNamara DJ, Rodwell VW (1972) Regulation of “active isoprene” biosynthesis. In: Biochemical Regulatory Mechanisms in Eucaryotic Cells, Kun E, Grisolia S (eds) J. Wiley and Sons, New York, 205–243

  14. Mitropoulos KA (1983) 3-hydroxy-3-methylglutaryl coenzyme A reductase. In: Sabine JR (ed) CRC-Press, Boca Raton, FL 33 431, 107–127

  15. Ohta K, Hayashida S (1983) Role of tween 80 and monoolein in a lipid-sterol-protein complex which enhances ethanol tolerance of sake yeasts. Appl EnvironMicrobiol 46:821–825

  16. Osman YA, Ingram LO (1985) Mechanism of ethanol inhibition of fermentation inZymomonas mobilis CP4. J Bacteriol 164:173–180

  17. Ourisson G, Albrecht P, Rohmer M (1984) Der mikrobielle Ursprung fossiler Brennstoffe. Spektrum der Wissenschaften, Oktober 1984:154–162

  18. Poralla K, Härtner T, Kannenberg E (1984) Effect of temperature and pH on the hopanoid content of Bacillus acidocaldarius. FEMS Microbiol Lett 23:253–256

  19. Poralla K, Kannenberg E, Blume A (1980) A glycolipid containing hopane isolated from the acidophilic, thermophilic Bacillus acidocaldarius, has a cholesterol-like function in membranes. FEBS Lett 113:107–110

  20. Renoux JM, Rohmer M (1985) Procaryotic triterpenoids: new bacteriohopanetetrol cyclitol ethers from the methylotrophic bacterium Methylobacterium organophilum. Eur J Biochem 151:405–410

  21. Rogers PL, Lee KJ, Tribe DE (1979) Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations. Biotechnol Lett 1:165–170

  22. Rohmer M, Bouvier-Nave P, Ourisson G (1984) Distribution of hopanoid triterpenes in procaryotes. J Gen Microbiol 130:1137–1150

  23. Rowe ES (1983) Lipid chain length and temperature dependence of ethanol-phosphatidylcholine interactions. Biochemistry 22:3305–3311

  24. Sabine JR (1983) 3-hydroxy-3-methylglutaryl coenzyme A reductase. In: Sabine JR (ed) CRC-Press, Boca Raton, FL 33 431, 11–19

  25. Taylor RF (1984) Bacterial triterpenoids. Microbiol Rev 48:181–198

  26. Thomas DS, Hossack JA, Rose AH (1978) Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Arch Microbiol 117:239–245

  27. Uchida K (1974) Occurrence of saturated and monounsaturated fatty acids with unusually long-chains (C20−C30) in Lactobacillus heterohiochii, an alcoholophilic bacterium. Biochim Biophys Acta 348:86–93

Download references

Author information

Correspondence to Andrea Schmidt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmidt, A., Bringer-Meyer, S., Poralla, K. et al. Effect of alcohols and temperature on the hopanoid content of Zymomonas mobilis . Appl Microbiol Biotechnol 25, 32–36 (1986). https://doi.org/10.1007/BF00252509

Download citation


  • Alcohol
  • Culture Condition
  • Stationary Phase
  • Batch Culture
  • Chromatographic Method