Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Liquid-wall shear stress in stratified liquid/gas flow

Abstract

Stratified liquid/gas flow was experimentally investigated in a horizontal or slightly inclined circular pipe. The polarographic method was used to determine the liquid-wall shear stress. Both the liquid fraction and pressure gradient were also measured. Sixteen wall electrodes were positioned around the tube perimeter. Local liquid-wall shear stress profiles are presented for horizontal and near-horizontal flows. The averaged values are compared with the results obtained from a stratified flow model and models using the experimental data of liquid fraction and pressure drop.

This is a preview of subscription content, log in to check access.

Abbreviations

d :

electrode diameter (m)

D :

pipe diameter, hydraulic diameter (m)

D :

diffusivity (m2 s−1)

f :

friction factor

g :

acceleration due to gravity (m s−2)

h :

height of liquid film (m)

k :

mass transfer coefficient (m s−1)

L :

characteristic length (m)

dp/dz :

pressure gradient (Pa m−1)

P :

perimenter (m)

Re :

Reynolds number = ρDV

S :

cross-sectional area of flow (m2)

Sh :

Sherwood number = κL/D

U :

superficial gas or liquid velocity (m s−1)

V :

phase mean velocity (m s−1)

z :

coordinate in the downstream direction, defined in Fig. 1 (m)

Z :

dimensionless wall shear stress = τL2/(μD)

αL :

liquid fraction, holdup

β:

angle of pipe inclination to horizontal

θ:

angle (Fig. 2)

θ0 :

angle defined by the interface position (Fig. 1)

μ:

dynamic viscosity (kgm−1 s-1)

ρ:

density (kg m−3)

τ:

shear stress (Pa)

G:

gas

i:

interface

L:

liquid m mixture max maximum

References

  1. [1]

    T. J. Hanratty and L. P. Reiss, AIChE. J. 8 (1962) 245–253.

  2. [2]

    T. J. Hanratty, J. Appl. Electrochem. 21 (1991) 1038–1046.

  3. [3]

    L. P. Reiss and T. J. Hanratty, AIChE J. 9 (1963) 154–160.

  4. [4]

    C. Deslouis, O. Gil and B. Tribollet, J. Fluid Mech. 215 (1990) 85–100.

  5. [5]

    B. Py, Experiments in Fluids 8 (1990) 281–285.

  6. [6]

    A. A. van Steenhoven and F. J. H. M. van de Beucken, J. Fluid Mech. 231 (1991) 599–614.

  7. [7]

    N. Brauner, Int. J. Heat Mass Transfer 40 (1991) 2641–2652.

  8. [8]

    C. Koeck, Thèse Docteur-Ingénieur, Université Paris VI-Orsay (1980).

  9. [9]

    G. Cognet, M. Lebouché and M. Souhar, AIChE J. 30 (1984) 338–341.

  10. [10]

    M. Souhar and G. Cognet, in ‘Measuring Techniques in Gas-Liquid Two-Phase Flows’, UTAM Symposium Nancy 1983, Springer-Verlag, Berlin (1984) pp. 723–744.

  11. [11]

    O. N. Kashinsky, J. Appl. Electrochem. 21 (1991) 1095–1098.

  12. [12]

    A. H. Govan, G. F. Hewitt, D. G. Owen and G. Burnett, Int. J. Multiphase Flow 15 (1989) 307–325.

  13. [13]

    J. E. Kowalski, AIChE J. 33 (1987) 274–281.

  14. [14]

    Y. Hagiwara, E. Esmaeilzadeh, H. Tsutsui and K. Suzuki, Int. J. Multiphase Flow 15 (1989) 421–431.

  15. [15]

    Y. Taitel and A. E. Dukler, AIChE J. 22 (1976) 47–55.

  16. [16]

    S. S. Agrawal, G. A. Gregory and G. W. Govier, Can. J. Chem. Eng. 51 (1973) 280–286.

  17. [17]

    J. M. Rosant, C.R. Acad. Sci. Paris 302, Série II (1986) 197–200.

  18. [18]

    T. W. F. Russell, A. W. Etchells, R. H. Jensen and P. J. Arruda, AIChE J. 20 (1974) 664–669.

  19. [19]

    N. Andritsos and T. J. Hanratty, AIChE J. 33 (1987) 444–454.

  20. [20]

    N. P. Cheremisinoff and E. J. Davis, AIChE J. 25 (1979) 48–56.

  21. [21]

    M. Akai, A. Inoue and S. Aoki, Int. J. Multiphase Flow 7 (1981) 21–39.

  22. [22]

    O. Shoham and Y. Taitel, AIChE J. 30 (1984) 377–385.

  23. [23]

    J. M. Rosant, Thèse Doctorat d'Etat, ENSM-Univ. Nantes (1983).

  24. [24]

    A. Laouina, Thèse Doctorat 3ème cycle, ENSM-Univ. Nantes (1984).

  25. [25]

    J. M. Fitremann and J. M. Rosant, Revue Phys. Appl. 16 (1981) 93–103.

Download references

Author information

Additional information

This paper was presented at the International Workshop on Electrodiffusion Diagnostics of Flows held in Dourdan, France, May 1993.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosant, J.M. Liquid-wall shear stress in stratified liquid/gas flow. J Appl Electrochem 24, 612–618 (1994). https://doi.org/10.1007/BF00252085

Download citation

Keywords

  • Experimental Data
  • Physical Chemistry
  • Shear Stress
  • Pressure Gradient
  • Pressure Drop