Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Shock waves in ideal fluid mixtures with several temperatures

  • 57 Accesses

  • 10 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bowen, R. M., & R. L. Rankin, Acceleration Waves in Ideal Fluid Mixtures with Severa Temperatures. Arch. Rational Mech. Anal. 51, 261–277 (1973).

  2. 2.

    Truesdell, C., & R. Toupin, The Classical Field Theories. Handbuch der Physik, Band III/1, edited by S. Flügge. Berlin-Göttingen-Heidelberg: Springer 1960.

  3. 3.

    Bowen, R. M., & J. C. Wiese, Diffusion in mixtures of elastic materials. Intl. J. Engr. Sci. 7, 689–722 (1969).

  4. 4.

    Chen, P. J., & M. E. Gurtin, Growth and decay of one-dimensional shock waves in fluids with internal state variables. Phys. Fluids, 14, 1091–1094 (1971).

  5. 5.

    Chen, P. J., & M. E. Gurtin, The growth of one-dimensional shock waves in elastic nonconductors. Int. J. Solids Struct. 7, 5–10 (1971). Reprinted in Rubber Chem. Tech. 45, 999–1004 (1972).

  6. 6.

    Chen, P. J., One-dimensional shock waves in elastic non-conductors. Arch. Rational Mech. Anal. 43, 350–362 (1971).

  7. 7.

    Courant, R., & K. O. Friedrichs, Supersonic Flow and Shock Waves. New York: Interscience 1948.

  8. 8.

    Coleman, B. D., & M. E. Gurtin, Thermodynamics and one dimensional shock waves in materials with memory. Proc. Royal Soc. A, 292, 562–574 (1966).

  9. 9.

    Weyl, H., Shock waves in arbitrary fluids. Comm. Pure & Appl. Math. 2, 103–122 (1949).

Download references

Author information

Additional information

Communicated by C. Truesdell

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bowen, R.M., Chen, P.J. Shock waves in ideal fluid mixtures with several temperatures. Arch. Rational Mech. Anal. 53, 277–294 (1974). https://doi.org/10.1007/BF00251388

Download citation

Keywords

  • Neural Network
  • Shock Wave
  • Complex System
  • Nonlinear Dynamics
  • Electromagnetism