Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Theoretical validation of the physical scale modelling of the electrical potential characteristics of marine impressed current cathodic protection

Abstract

The criteria for the electromagnetic scaling of electrolytic (seawater) systems are reviewed and are shown to be satisfied in the DACS (dimension and conductivity scaling) physical scale modelling of the potential characteristics of the surface of cathodically protected surfaces and the surrounding seawater.

This is a preview of subscription content, log in to check access.

Abbreviations

r(x, y, z):

position vector

t :

time

t :

physical scaling factor

E(r, t :

electric field

E f :

electric field under flow conditions

H(r, t):

magnetic field

ε:

static dielectric constant

μ:

magnetic permeability

J(r, t):

electrical current density

J f :

electrical current density under flow conditions

J lim :

(diffusion) limited electrical current density

σ:

electrical conductivity

V :

electric potential (voltage)

V a :

anode potential

V i :

interface potential

V ia :

anode/electrolyte interface potential

Vs :

potential in electrolytic solution

V ic :

cathode/electrolyte interface potential

V c :

cathode potential

V 0 :

cathodic overpotential constant

V h :

hull potential

V ic(J):

current-voltage characteristic of cathode/electrolyte interface

ϱ:

electrical charge density

π+ :

electrical charge density of positive ions

ϱ :

electrical charge density of negative ions

v(r, t):

velocity of ion

v + :

velocity of positive ion

v p :

flow velocity of electrolyte

R p :

polarization resistance at electrode/electrolyte interface

a :

Tafel a-constant

b :

Tafel b-constant

T :

absolute temperature

P :

pressure

n :

unit normal

n i :

number of ions with charge z i

References

  1. [1]

    J. N. McGrath, D. J. Tighe-Ford and L. Hodgkiss, Corr. Prev. & Cont. 32 (1985) 36.

  2. [2]

    E. D. Thomas, K/E. Lucas, R. L. Foster, A. R. Parks and A. I. Kaznoff, NACE 89 Corrosion Conference, New Orleans, April (1989) Paper 274.

  3. [3]

    D. J. Tighe-Ford and J. N. McGrath, NACE 91 Corrosion Conference, Cincinnati, Ohio, March (1991) Paper 308.

  4. [4]

    J. N. McGrath, D. J. Tighe-Ford and S. Ramaswamy, NACE 91 Corrosion Conference, Cincinnati, Ohio, March (1991) Paper 531.

  5. [5]

    G. Sinclair, Proc. IRA 36 (1948) 1364.

  6. [6]

    D. Vitkovitch, in ‘Field Analysis’, Van Nostrand, London (1966), Chaps 6 and 11.

  7. [7]

    D. J. Tighe-Ford, J. N. McGrath and M. P. Wareham, Trans I. Mar. E. 100 (1989) 185.

  8. [8]

    J. N. Agar and T. P. Hoar, Disc. Faraday Soc. 1 (1947) 158.

  9. [9]

    C. J. Smith, ‘Electricity and Magnetism’, Edward Arnold, London (1954), pp. 661–3.

  10. [10]

    I. Fried, in ‘The Chemistry of the Electrode Processes’, Academic Press, London (1973) Chaps 2–4.

  11. [11]

    J. O. M. Bockris and A. K. N. Reddy, ‘Modern Electrochemistry’, Macdonald, London (1971).

  12. [12]

    N. W. Ashcroft and N. D. Mermin, ‘Solid State Physics’, HRW International Editions (1976) Chap. 17 p. 342, Chap. 18 p. 369.

  13. [13]

    H. V. Hack, Mats. Perf. November (1989) 72.

  14. [14]

    D. A. Jones, Corros. Sci. 11 (1971) 439.

  15. [15]

    S. W. J. Smith, Proc. Phys. Soc. 28 (1916) 148.

  16. [16]

    C. J. Wagner, J. Electrochem. Soc. 11 (1951) 116.

  17. [17]

    V. G. Levich, ‘Physiochemical Hydrodynamics’, Prentice-Hall, Englewood Cliffs, NJ (1962) Chap. 6.

  18. [18]

    J. C. Rowlands, in Discussion Section Trans. I. Mar. E. 100 (1989).

  19. [19]

    G. Joos, ‘Theoretical Physics’, Blackie, London (1960) Chaps 9, 32 and 35.

  20. [20]

    P. Khambaita, PhD Thesis (1995), Exeter University, UK.

  21. [21]

    J. N. McGrath, Research Report (1990) RNEC-RR-90006, RNEC Manadon, Plymouth, UK.

  22. [22]

    K. F. Sander, in ‘Cathodic Protection: Theory and Practice’, Ellis Horwood, Chichester (1986) pp. 31–37.

  23. [23]

    K. F. Chan, MSc Thesis (1986), RNEC Manadon, Plymouth, UK.

  24. [24]

    A. I. Kaznoff and E. D. Thomas, Proceedings of the 11th International Corrosion Congress, Florence, 2 April (1990) 103.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ditchfield, R.W., McGrath, J.N. & Tighe-Ford, D.J. Theoretical validation of the physical scale modelling of the electrical potential characteristics of marine impressed current cathodic protection. J Appl Electrochem 25, 54–60 (1995). https://doi.org/10.1007/BF00251265

Download citation

Keywords

  • Physical Chemistry
  • Scale Modelling
  • Physical Scale
  • Cathodic Protection
  • Potential Characteristic