Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Existence of weak solutions to linear indefinite systems of differential equations

  • 52 Accesses

  • 2 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. Bates, Solutions of nonlinear elliptic systems with meshed spectra, Nonlinear Analysis, Theory and Applications 4, 1023–1030, 1979.

  2. 2.

    L. Brun, Méthodes énergétiques dans les systèmes évolutifs linéaires. Deuxième Partie: Théorèmes d'unicité. J. de Méchanique 8, 167–192, 1969.

  3. 3.

    D. Colton & J. Wimp, The construction of solutions to the heat equation backward in time. Math. Methods in Appl. Sci. 1, 32–39, 1979.

  4. 4.

    G. Fichera, Linear elliptic differential systems and eigenvalue problems. Lecture Notes in Mathematics, No. 8, Springer-Verlag, Berlin Heidelberg New York 1965.

  5. 5.

    G. Fichera, Existence theorems in elasticity. Handbuch der Physik, Vol. VIa/2, 347–389, Springer, Berlin Heidelberg New York 1974.

  6. 6.

    G. P. Galdi, R. J. Knops & S. Rionero, Uniqueness and continuous dependence in the linear elastodynamic exterior and half-space problems, Math. Proc. Camb. Phil. Soc. 99, 357–366, 1986.

  7. 7.

    R. J. Knops, Instability and the ill-posed Cauchy problem in elasticity, Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, Edited by H. G. Hopkins & M. J. Sewell, Pergamon, Oxford 1981.

  8. 8.

    R. J. Knops, Existence of solutions to unstable problems in linear elastodynamics Stability in the Mechanics of Continua, (Ed. F. H. Schroeder), 281–289, IUTAM Symposium Numbrecht (Germany) 1981, Springer, Berlin Heidelberg New York 1982.

  9. 9.

    R. J. Knops & L. E. Payne, Continuous data dependence for the equations of classical elastodynamics. Proc. Camb. Phil. Soc. 66, 481–491, 1969.

  10. 10.

    R. J. Knops & L. E. Payne, Growth estimates for solutions of evolutionary equations in Hilbert space with applications in elastodynamics, Arch. Rational Mech. Anal., 41, 363–398, 1971.

  11. 11.

    H. A. Levine, An equipartition of energy theorem for weak solutions of evolutionary equations in Hilbert space: The Lagrange identity method, J. Diff. Eqns. 24, 197210, 1977.

  12. 12.

    J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod Gauthier-Villars, Paris 1969.

  13. 13.

    J.-L. Lions & E. Magenes, Problèmes aux limites non homogènes et applications. Dunod 1968–70.

  14. 14.

    W. Littman, Remarks on the Dirichlet problem for general linear partial differential equations, Comm. Pur. Appl. Maths. XI, 145–151, 1958.

  15. 15.

    J. E. Marsden & T. J. R. Hughes, Mathematical Foundations of Elasticity, Prentice-Hall Inc. 1983.

  16. 16.

    L. Nirenberg, Linear Functional Analysis, N.Y.U. Lecture Notes 1975.

  17. 17.

    R. E. Schowalter, Quasi-reversibility of first and second order parabolic evolution equations. Improperly Posed Boundary Value Problems. Research Notes in Mathematics, Vol. 1, 76–93. Pitman Publishing, London 1975.

  18. 18.

    A. H. Tihonov & V. Y. Arsenin, Solutions of ill-posed problems, Winston, 1977.

  19. 19.

    O. Vejvoda & M. Štědry, Existence of classical periodic solutions of the wave equation. The relation of the number-theoretic character of the period and the geometric properties of solutions, Differential Equations 20, 1243–1248, 1984.

  20. 20.

    N. S. Wilkes, On the non-existence of semi-groups for some equations of continuum mechanics, Proc. Roy. Soc. Edin. A 86, 303–306, 1980.

  21. 21.

    S. Zaidman, Some remarks concerning regularity of solutions for abstract differential equations, Rend. Sem. Math. Univ. Padova 62, 47–64, 1982.

Download references

Author information

Additional information

Dedicated to Walter Noll on his sixtieth birthday

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knops, R.J. Existence of weak solutions to linear indefinite systems of differential equations. Arch. Rational Mech. Anal. 98, 179–190 (1987). https://doi.org/10.1007/BF00251233

Download citation

Keywords

  • Differential Equation
  • Neural Network
  • Complex System
  • Weak Solution
  • Nonlinear Dynamics