Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nonlinear partial differential inequalities

  • 106 Accesses

  • 4 Citations

This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.

    Akô, K., & T. Kusano, On bounded solutions of second order elliptic differential equations. Journal Fac. Sci. Univ. of Tokyo, Sec. I, 11, 1, 29–37 (1964).

  2. 2.

    Atkinson, F. V., On a theorem of K. Yôsida. Proc. Japan Academy 28, 327–329 (1952).

  3. 3.

    Bohn, S. Elwood, & Lloyd K. Jackson, The Liouville theorem for a quasi-linear elliptic partial differential equation. Trans. Amer. Math. Soc. 104, 392–397 (1962).

  4. 4.

    Collatz, L., Aufgaben monotoner Art. Arch. Math. 3, 366–376 (1952).

  5. 5.

    Collatz, L., Funktionalanalysis und numerische Mathematik. Berlin-Göttingen-Heidelberg: Springer 1964.

  6. 6.

    Friedman, A., Partial Differential Equations of Parabolic Type. Prentice-Hall 1964.

  7. 7.

    Habetha, K., Über das Maximumprinzip und verwandte Fragen bei Lösungen elliptischparabolischer Differentialgleichungen 2. Ordnung. Math. Zeit. 81, 308–325 (1963).

  8. 8.

    Haviland, E. K., A note on unrestricted solutions of the differential equation Δu=f(u). J. London Math. Soc. 26, 210–214 (1951).

  9. 9.

    Hopf, E., Elementare Bemerkungen über die Lösung partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Sitzber. Akad. der Wiss., Berlin, 1927, 56–75.

  10. 10.

    Keller, J. B., On solutions of Δu=f(u). Comm. Pure Appl. Math. 10, 503–510 (1957).

  11. 11.

    Meyers, Norman, & James Serrin, The exterior Dirichlet problem for second order elliptic partial differential equations. J. Math. Mech. 9, 513–538 (1960).

  12. 12.

    Nehari, Zeev, A differential inequality. J. d'Anal. Math. 14, 297–302 (1965).

  13. 13.

    Nirenberg, L., A strong maximum principle for parabolic equations. Comm. Pure and Appl. Math. 6, 167–177 (1953).

  14. 14.

    Osserman, R., On the inequality Δu≧f(u). Pacific J. Math. 7, 1641–1647 (1957).

  15. 15.

    Piepenbrink, J., Differential inequalities in unbounded regions. Dissertation, University of California, Los Angeles, 1969.

  16. 16.

    Redheffer, Raymond, Elementary remarks on problems of mixed type. J. Math. Phys. 53, 1–14 (1964).

  17. 17.

    Serrin, J., On the Harnack inequality for linear elliptic equations. Journal d'Anal. Math. 1956, 292–308.

  18. 18.

    Serrin, J., Notes on boundary layer theory. University of Minnesota (excerpt made available to us at U.C.L.A.).

  19. 19.

    Serrin, J., The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Phil. Trans. Roy. Soc. London 264, 413–496 (1969).

  20. 20.

    Velte, W., Eine Anwendung des Nirenbergschen Maximumprinzips für parabolische Differentialgleichungen in der Grenzschichttheorie. Arch. Rational Mech. Anal. 5, 420–431 (1960).

  21. 21.

    Výborný, R., Über das erweiterte Maximumprinzip. Czechoslovak J. Math. 14 (89), 116–121 (1964).

  22. 22.

    Walter, W., Über ganze Lösungen der Differentialgleichung Δu=f(u), Jahresber. Deutsch. Math. Verein 57, 94–102 (1955).

  23. 23.

    Walter, W., Differential- und Integralgleichungen. Springer Tracts in Nat. Phil. 2. BerlinGöttingen-Heidelberg: Springer 1964.

  24. 24.

    Wittich, H., Ganze Lösungen der Differentialgleichung Δu=f(u). Jahresber. Deutsch. Math. Verein 57, 94–102 (1955).

  25. 25.

    Yôsida, K., A theorem of Liouville's type for meson equation. Proc. Japan Academy 27, 334–339 (1951).

Download references

Author information

Additional information

This paper was supported in part by the National Science Foundation under Grant GP-7710.

Communicated by J. Serrin

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Piepenbrink, J., Redheffer, R. Nonlinear partial differential inequalities. Arch. Rational Mech. Anal. 36, 89–121 (1970). https://doi.org/10.1007/BF00250811

Download citation

Keywords

  • Neural Network
  • Complex System
  • Nonlinear Dynamics
  • Electromagnetism
  • Differential Inequality