Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The development of jump discontinuities in nonlinear hyperbolic systems of equations in two independent variables

  • 60 Accesses

  • 34 Citations

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Courant, R., & K. O. Friedricus: Supersonic Flow and Shock Waves. New York: Interscience Publishers 1948.

  2. [2]

    Courant, R., & D. Hilbert: Methods of Mathematical Physics. II. New York: Interscience Publishers 1962.

  3. [3]

    Lax, P. D.: The Initial Value Problem for Nonlinear Hyperbolic Equations in Two Independent Variables. Ann. Math. Stus 33, 211–229, Princeton 1954.

  4. [4]

    Lax, P. D.: Nonlinear Hyperbolic Equations. Comm. Pure and Appl. Math. 6, 231–258 (1953).

  5. [5]

    Haar, A.: Über Eindeutigkeit und Analyzität der Lösungen partieller Differentialgleichungen. Atti del Congresso Internazionale dei Matematici, Bologna (1928), 2, 5–10 (1928).

  6. [6]

    Jeffrey, A., & T. Taniti: Nonlinear Wave Propagation. New York: Academic Press (to appear October 1963).

Download references

Author information

Additional information

Communicated by W. Magnus

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jeffrey, A. The development of jump discontinuities in nonlinear hyperbolic systems of equations in two independent variables. Arch. Rational Mech. Anal. 14, 27–37 (1963). https://doi.org/10.1007/BF00250691

Download citation

Keywords

  • Critical Time
  • Critical Distance
  • Constant State
  • Jump Condition
  • Jump Discontinuity