Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Upper and lower bounds for the apsidal angle in the theory of the heavy symmetrical top

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Diaz, J. B., & F. T. Metcalf, Upper and lower bounds for the apsidal angle in the theory of the spherical pendulum. Proc. Fourth U.S. Nat. Congr. Appl. Mechanics, 1962, pp. 127–135.

  2. [2]

    Weinstein, A., The spherical pendulum and complex integration. Amer. Math. Monthly 49, 521 (1942).

  3. [3]

    Kohn, W., Contour integration in the theory of the spherical pendulum and the heavy symmetrical top. Trans. Amer. Math. Soc. 59, 107 (1946).

  4. [4]

    Synge, J. L., Apsidal angles for symmetrical dynamical systems with two degrees of freedom. Bull. Amer. Math. Soc. 54, 111 (1948).

  5. [5]

    MacMillan, W. D., Dynamics of Rigid Bodies. New York: Dover 1960.

  6. [6]

    Whittaker, E. T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed., p. 156. Cambridge: Cambridge Univ. Press 1937.

  7. [7]

    Hadamard, J., Sur la précession dans le mouvement d'un corps pesant de révolution fixé par un point de son axe. Bull. Sci. Math. (2) 19, 228 (1895).

  8. [8]

    Diaz, J. B., & F. T. Metcalf, On a result of Hadamard concerning the sign of the precession of a heavy symmetrical top. Proc. Amer. Math. Soc. 13, 669 (1962).

Download references

Author information

Additional information

This research was supported in part by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command and in part by the U. S. Naval Ordnance Laboratory.

Communicated by E. Leimanis

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diaz, J.B., Metcalf, F.T. Upper and lower bounds for the apsidal angle in the theory of the heavy symmetrical top. Arch. Rational Mech. Anal. 16, 214–229 (1964). https://doi.org/10.1007/BF00250645

Download citation

Keywords

  • Neural Network
  • Complex System
  • Lower Bound
  • Nonlinear Dynamics
  • Electromagnetism