Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Finite deformation by mechanical twinning

  • 260 Accesses

  • 115 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Sir Lawrence Bragg & G. F. Claringbull, Crystal Structures of Minerals, in the Crytsalline State-Vol. IV. ed. Sir Lawrence Bragg. G. Bell and Sons: London, 1965.

  2. 2.

    E. Schmid & W. Boas, Plasticity of Crystals. F. A. Hughes and Co.: London, 1950.

  3. 3.

    J. W. Evans, The geometry of twin crystals. Proc. Royal Society of Edinburgh 32 (1911–12), p. 416–457.

  4. 4.

    L. A. Thomas & W. A. Wooster, Piezocrescence-the growth of Dauphiné twinning in quartz under stress. Proc. Roy. Soc. A 208 (1951), p. 43–62.

  5. 5.

    A. G. McLellan, The thermodynamic theory of the growth of Dauphiné twinning in quartz under stress. J. Phys. C: Solid State Phys. 11 (1978), p. 4665–4679.

  6. 6.

    M. Cohen, G. B. Olson & P. C. Clapp, On the classification of displacive transformations (what is martensite?) in Proceedings of the International Conference on Martensitic Transformations, ICOMAT. Dept. of Materials Sci. and Eng. MIT: Cambridge, Ma. (1979).

  7. 7.

    G. P. Parry, On phase transitions involving internal strain, to appear.

  8. 8.

    C. M. Wayman & K. Shimizu, The shape memory (‘marmem’) effect in alloys. Metal Sci. J. 6 (1972), p. 175–183.

  9. 9.

    F. E. Wang, On the TiNi (Nitinol) martensitic transition, part I. Report NOLTR 72-4-Naval Ordnance Laboratory, Silver Spring, Md (1972).

  10. 10.

    J. Perkins, Shape Memory Effects in Alloys. Plenum Press: New York, 1975.

  11. 11.

    J. S. Bowles & J. K. MacKenzie, The crystallography of martensite transformations, I and II. Acta Metallurgica 2 (1954), p. 129–137, p. 138–147.

  12. 12.

    G. P. Parry, Twinning in nonlinearly elastic monatomic crystals. Int. J. Solids Structures 16 (1980), p. 275–281.

  13. 13.

    J. L. Ericksen, Continuous martensitic transitions in thermoelastic solids, to appear.

  14. 14.

    Private communication with Dr. Mario Pitteri, Via Bonazza 60, 35100 Padova, Italy.

  15. 15.

    K. V. Vladimirskii, Twinning in Calcite. Zhur. Eksptl. i Teoret. Fiz. 17, 6 (1947), p. 530–536.

  16. 16.

    E. O. Hall, Twinning and Diffusionless Transformations in Metals. Butterworths Publications Ltd: London, 1954.

  17. 17.

    I. M. Lifshitz, Macroscopic description of twinning phenomenon in crystals. Zhur. Eksptl. i Teoret. Fiz. 18, 12 (1948), p. 1134–1143.

  18. 18.

    R. A. Toupin, The elastic dielectric. J. Rational Mechanics & Analysis 5 (1956), p. 849–915.

  19. 19.

    J. L. Ericksen, Nonlinear elasticity of diatomic crystals, Int. J. Solids & Structures 6 (1970), p. 951–957.

  20. 20.

    Z. S. Basinski & J. W. Christian, Crystallography of deformation by twin boundary movements in indium-thallium alloys. Acta Metallurgica 2 (1954), p. 101–116.

  21. 21.

    M. Hayes, Static implications of the strong-ellipticity condition. Arch. Rational Mechanics & Analysis 33 (1969), p. 181–191.

  22. 22.

    R. A. Toupin, Stress tensors in elastic dielectrics. Arch. Rational Mechanics & Analysis 5 (1960), p. 440–452.

  23. 23.

    P. Vigoureux & C. F. Booth, Quartz Vibrators and their Applications. His Majesty's Stationery Office: London, 1950.

  24. 24.

    E. M. Patterson, Topology. Oliver & Boyd: Edinburgh, 1969.

  25. 25.

    G. Friedel, Leçons de Cristallographie. Librairie Scientifique Albert Blanchard: Paris, 1926.

  26. 26.

    M. V. Klassen-Neklyudova, Mechanical Twinning of Crystals. Consultants Bureau: New York, 1964.

  27. 27.

    J. K. Knowles & E. Sternberg, On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. J. Elasticity 8 (1978), p. 329.

  28. 28.

    M. F. Beatty, Some static and dynamic implications of the general theory of elastic stability. Arch. Rational Mechanics & Analysis 19 (1965), p. 167–187.

  29. 29.

    D. Gilbarg & N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag: Berlin-Heidelberg-New York, 1977.

  30. 30.

    R. D. James, Co-existent phases in the one-dimensional static theory of elastic bars. Arch. Rational Mechanics & Analysis 72 (1979), p. 99–139.

  31. 31.

    J. L. Ericksen, Equilibrium of bars. J. Elasticity 5 (1975), p. 191–201.

  32. 32.

    M. Coral, On the necessary conditions for the minimum of a double integral. Duke Math. Journal 3 (1937), p. 585–592.

  33. 33.

    C. Truesdell, A First Course in Rational Continuum Mechanics, Vol. 2. Academic Press: New York-San Francisco-London, forthcoming.

Download references

Author information

Additional information

Communicated by R. A. Toupin

Rights and permissions

Reprints and Permissions

About this article

Cite this article

James, R.D. Finite deformation by mechanical twinning. Arch. Rational Mech. Anal. 77, 143–176 (1981). https://doi.org/10.1007/BF00250621

Download citation

Keywords

  • Neural Network
  • Complex System
  • Nonlinear Dynamics
  • Electromagnetism
  • Finite Deformation