Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Electroinduced SRN 1 preparative reactions part 1: Estimation of the limiting diffusion currents on various cathodic materials in liquid ammonia and dimethylformamide

  • 42 Accesses

  • 16 Citations

Abstract

Limiting diffusion currents are estimated by an indirect method which consists in determining the chemical yield of substitution product in the electrosynthesis of a biaryl by an SRN type reaction. The limiting diffusion currents can then be deduced from the yields. Different industrial cathodic materials have been investigated both in liquid ammonia (−40° C) and dimethylformamide (20°C). The limiting diffusion currents are generally about 2.8 times larger in ammonia than in dimethyl-formamide.

This is a preview of subscription content, log in to check access.

Abbreviations

R :

yield in biaryl with respect to the reacted aromatic halide

k d :

diffusion rate constant

k 2 :

rate constant of the key-reaction between Ar and Nu

A :

cathode area

D :

diffusion coefficient of the mediator

D 1 :

diffusion coefficient of mediator P 1

D 2 :

diffusion coefficient of mediator P 2 (in the same medium as for D 1)

D NH 3 :

diffusion coefficient of the mediator in NH3

D DMF :

diffusion coefficient of the mediator in DMF

D 2,NH 3 :

diffusion coefficient of mediator P1 in NH3

D 2,NH 3 :

diffusion coefficient of mediator P2 in NH3

D 2,DMF :

diffusion coefficient of mediator P2 in DMF

δ:

diffusion layer thickness

δNH 3 :

diffusion layer thickness in NH3

δDMF :

diffusion layer thickness in DMF

i lim :

limiting diffusion current of the mediator

I lim :

limiting diffusion current of the mediator per unit of concentration of the mediator

I lim :

limiting diffusion current of the mediator per unit of concentration of the mediator and per unit of cathode area

I lim,NH 3 :

limiting diffusion current of the mediator in NH3 (normalized with respect to the cathode area and the concentration)

I lim,DMF :

limiting diffusion current of the mediator in DMF (normalized with respect to the cathode area and the concentration)

ip :

reduction peak current of the mediator

ip NH 3 :

reduction peak current of the mediator in NH3 (measured by cyclic voltammetry)

ip DMF :

reduction peak current of the mediator in DMF (measured by cyclic voltammetry in the same conditions of concentration, cathode and scan speed as in NH3)

Ψ:

solvent association factor

M s :

solvent molecular weight

η:

solvent absolute viscosity

V :

substrate molecular volume

V 1 :

molecular volume of mediator P1

V 2 :

molecular volume of mediator P2

ω:

rotation speed of the electrode

ν:

kinematic viscosity, ν = η/d

d :

solvent density

ArH :

amount of reduction product, mol

ArNu :

amount of coupling product, mol

References

  1. [1]

    J. F. Bunnett, Acc. Chem. Res. 11 (1978) 413.

  2. [2]

    R. A. Rossi and R. H. de Rossi, in ‘Aromatic Nucleophilic Substitution by the SRN 1 Mechanism’, ACS Monograph 178, American Chemical Society, Washington (1983).

  3. [3]

    J. M. Savéant, Acc. Chem. Res. 13 (1980) 323.

  4. [4]

    C. Amatore, J. Pinson, J. M. Saveant and A. Thiebault, J. Electroanal. Chem. 128 (1981) 231.

  5. [5]

    N. Alam, C. Amatore, C. Combellas, A. Thiebault and J. N. Verpeaux, J. Org. Chem. 55 (1990) 6347.

  6. [6]

    J. Chaussard,J. C. Folest, J. Y. Nedelec,J. Périchon, S. Sibille, M. Troupel, Synthesis (1990) 369.

  7. [7]

    C. Combellas, H. Marzouk, A. Thiebault, J. Appl. Electrochem. 21 (1991) 267.

  8. [8]

    A. Savall, Actualité Chimique 1 (1992) 35.

  9. [9]

    C. Amatore, J. Pinson, J. M. Saveant and A. Thiebault, J. Am. Chem. Soc 104 (1982) 1979.

  10. [10]

    N. Alam, C. Amatore, C. Combellas, J. Pinson, J. M. Saveant, A. Thiebault and J. N. Verpeaux, J. Org. Chem. 53 (1988) 1496.

  11. [11]

    M. Medebielle, J. Pinson and J. M. Saveant, J. Am. Chem. Soc. 56 (1991) 6872.

  12. [12]

    C. Degrand, Tetrahedron 46 (1990) 5237.

  13. [13]

    C. Thobie-Gautier, M. Genesty, C. Degrand, J. Org. Chem. 56 (1991) 3452.

  14. [14]

    C. Thobie-Gautier, C. Degrand, ibid. 56 (1991) 5703.

  15. [15]

    C. Combellas, Y. Lu, A. Thiebault, Euchem Conference on Electrochemistry, Wiesbaden (21–25 April 1992).

  16. [16]

    A. J. Bard, L. R. Faulkner, in ‘Electrochemical Methods’, Wiley, New York (1980).

  17. [17]

    M. Herlem, Bull. Soc. Chim. Fr. (1967) 1687.

  18. [18]

    C. P. Andrieux, J. M. Saveant and D. Zann, Nouv. J. Chim. 8 (1984) 107.

  19. [19]

    C. Amatore, M. A. Oturan, J. Pinson, J. M. Saveant, A. Thiebault, J. Am. Chem. Soc. 107 (1985) 3451.

  20. [20]

    C. R. Wilke, P. Chang, Am. Inst. Chem. Eng. J. 1 (1955) 264.

  21. [21]

    J. J. Lagowski, G. A. Moczygemba, in ‘The Chemistry of Non-aqueous Solvents’, Part II, Acidic and Basic Solvents, Academic Press, New York (1967).

  22. [22]

    Riddick, Bunger, in ‘Techniques of Chemistry’, 2: ‘Organic Solvents, Physical Properties and Methods of Purification’, 3rd edn., Wiley Interscience, New York (1972) p. 446.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Combellas, C., Lu, Y. & Thiebault, A. Electroinduced SRN 1 preparative reactions part 1: Estimation of the limiting diffusion currents on various cathodic materials in liquid ammonia and dimethylformamide. J Appl Electrochem 23, 841–847 (1993). https://doi.org/10.1007/BF00249958

Download citation

Keywords

  • Ammonia
  • Physical Chemistry
  • Cathodic Material
  • Dimethylformamide
  • Indirect Method